第13回 冬のワークショップ

快・不快 "Pleasure and Pain"

日程:2013年1月9日(水)-11日(金)

会場:
ルスツリゾート(北海道蛇田郡留寿都村字泉川13)
  http://www.rusutsu.co.jp/winter/
会場地図:
ノースウイング コンベンションホール 18番ホール 

スケジュール:

 1月9日(水)-11日(金)
快・不快 "Pleasure and Pain"
9日 スペシャルセッション
18:10-19:00 松元健二(玉川大学)
19:10-20:00 Dana M Small(Yale University)
20:10-21:00 Kent Berridge(University of Michigan)
21:00-23:00 ポスターセッション
10日 トピックセッション
15:30-16:20 風間北斗 (RIKEN)
16:30-17:20 内田直滋 (Harvard University)
17:30-18:20 三浦 佳二(東北大学)
20:00-22:00 ポスターセッション
11日 トピックセッション
 9:00-9:50 山本慎也 (産業技術総合研究所)
 10:00-10:50 山本真也(京都大学)
 11:00-11:50 渡邊正峰(東京大学)


Abstracts and References:


Kenji Matsumoto
松元健二 (玉川大学)

Neural Basis of Intrinsic Motivation and Self-Determination

Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person’s intrinsic motivation to engage in a task. This “undermining effect” presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. In order to uncover its neural basis, we induced the undermining effect behaviorally using an inherently interesting task (stopwatch task), and tracked its neural correlates using functional magnetic resonance imaging (fMRI). We found that performance-based monetary reward indeed undermined intrinsic motivation, as assessed by the number of voluntary engagements in the task. Moreover, striatal responses to success feedback (compared to failure feedback) and prefrontal responses to the stopwatch-task start cue (compared with the control-task start cue) decreased along with the behavioral undermining effect. These findings suggest that the corticobasal ganglia-valuation system generates the undermining effect through the integration of extrinsic reward value and intrinsic task value.
A leading theory of intrinsic motivation (self-determination theory) states that the feeling of self-determination to do a task underlies intrinsic motivation for the task. In order to reveal the neural basis of this effect we used fMRI to compare brain activity in response to success and failure feedback during stopwatch trials in which the stopwatch chosen by the subjects (self-determined choice (SC) condition) and those in which the stopwatch was chosen by the computer (forced choice (FC) condition). Behaviorally, the SC condition indeed enhanced performance compared to the FC condition. Neurally, only failure feedback during the FC condition elicited a significant drop in vmPFC activation, while no such choice condition x feedback type interaction was observed in the striatum. These results indicate that negative reward value associated with failure feedback vanished in the SC condition. Moreover, the vmPFC resilience to failure was significantly correlated with the increased performance associated with self-determined choice. These findings suggest that the vmPFC plays a unique and critical role in the facilitative effects of self-determined choice on motivation and performance.

Reference:
Murayama, K., Matsumoto, M., Izuma, K. & Matsumoto, K. (2010) Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proc Natl Acad Sci U S A, 107, 20911-20916.


Dana M Small
Yale University

Flavor preference formation in humans: Mind versus metabolism

Experimental animals readily and quickly increase their intake of flavors associated with intragastric glucose infusion and chose to consume these flavors (when sampled in the absence of calories) over water or even saccharin, which is a highly preferred solution (Sclafani, 2004). This “flavor nutrient learning” indicates that the post-ingestive effects of nutrients are either more potent reinforcers than the pleasures evoked by oral sensations, or that post-ingestive signals increase the perceived pleasantness of foods to thereby drive intake. To answer these questions we have conducted a series of functional neuroimaging studies in humans, who can readily use rating scales to report subjective liking for flavors before and after they are associated with calories. We report that post-oral signals generated by carbohydrate ingestion produce weak but perceptually meaningful increases in liking for the flavors when later sampled in the absence of calories, and we demonstrate that these increases in liking are reflected by responses in the anterior insula. This indicates that post-oral signals can influence neural coding of flavors to increase perceived pleasure. However, this weak perceptual effect contrasts with robust brain responses that are tightly coupled to the caloric dose with which flavors were previously associated, and to the ability of calorie to induce a change in blood glucose levels at the time of conditioning. Moreover, these “biological utility” brain responses are not related to flavor liking. Thus our findings indicate that there are separate circuits for conditioning liking versus biological utility. Critically, when participants are asked to select which of two flavored beverages they would like to consume all but one selected the flavor that had been paired with calories over the equally liked 0-calorie paired flavor. We conclude that the ability of our physiology to transform post-ingestive signals into liking of foods is weak. Instead, our findings suggest that change in blood glucose is a critical post-ingestive signal that induces neuroplasticity to code biological utility and guide food choice independently from conscious perceptions of pleasure.

Kent Berridge
James Olds Collegiate Professor of Psychology & Neuroscience University of Michigan


Brain Limbic Generators for Delight, Desire, and Dread

Clinical disorders of addiction, binge eating, depression and schizophrenia often involve intense psychopathological mood or motivation states. So it is of interest to understand how limbic brain circuits (involving nucleus accumbens) generate intense motivational states of reward ‘wanting’ and ‘liking’, and also of fearful or aversive states.
Affective neuroscience studies indicate that ‘wanting’ a reward is generated by a different
brain mechanism from ‘liking’ the same reward. The difference between wanting vs liking has implications for understanding addiction and related disorders. Yet surprisingly, desire and fear can both can both be generated by an overlapping mechanism, which may have different modes for each. This lecture will address such dissociations and convergence in affective brain mechanisms.



Hokto Kazama
風間北斗(理化学研究所 脳科学総合研究センター)


匂い認識を支える神経回路基盤

外界から情報を獲得する時、脳内では複数の神経細胞が活動する。従って、知覚を生み出すメカニズムを理解する為には、感覚情報を表現する神経活動総体を把握する必要がある。しかしながら、生体内において、細胞や回路素子の解像度で神経表現を俯瞰することは困難である。我々は、この目的を達成するために、数的にシンプルであるショウジョウバエ成虫の嗅覚回路を対象にしている。この回路では、イメージングの手法を用いることで、嗅覚受容細胞、二次細胞、連合野に存在する三次細胞それぞれの階層において、ほぼ全ての神経細胞から活動を取ることが可能である。嗅覚受容細胞と二次細胞に関しては、各細胞を、個体を超えて遺伝的・形態的・機能的に一意に同定することもできる。これまでに、本回路が行う信号処理の解析は進んできたものの、それらが如何に知覚の生成に貢献するかはあまり調べられていない。ここでは、匂いの認識を支える神経基盤を理解する為の我々のアプローチを紹介する。

Reference:
Kazama, H. and Wilson, R.I. (2009). Origins of correlated activity in an olfactory circuit. Nature Neuroscience 12, 1136-1144.
Kazama, H. and Wilson, R.I. (2008). Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 58, 401-413.
http://kazama.brain.riken.jp/publications_jp.php

Naoshige Uchida
内田直滋

Department of Molecular and Cellular Biology, Center for Brain Science



Dissecting computations in the dopamine reward circuit

We make decisions based not only on current sensory inputs but also on the consequences of previous decisions. How do animals learn from the consequences of previous decisions? Psychological studies of animal learning have shown that temporal contiguity between two events (e.g. a sensory cue and reward) is not sufficient for establishing associations between them. Instead, the efficiency of learning critically depends on the discrepancy between predicted and actual outcomes (i.e. prediction errors) (Kamin, 1969; Rescorla and Wagner, 1972).
Neurophysiological studies in non-human primates have shown that dopamine neurons in the midbrain signal discrepancies between expected and actual reward, i.e., they compute reward prediction error (Schultz et al., 1997). Because these firing patterns closely resemble a teaching signal used in machine learning theories (Sutton and Barto, 1998), this finding sparked great enthusiasm for understanding the function of dopamine neurons on a firm theoretical footing. Despite such interest, how dopamine neurons compute reward prediction error remains a mystery. To address how dopamine neurons compute reward prediction error, we have been taking a multidisciplinary approach using a mouse model amenable to emerging genetic and molecular techniques. In this talk, I will discuss our recent progress in dissecting neural circuits involved in reward prediction error calculations.



Reference:
Cohen et al., Nature 2012
Watabe-Uchida et al., Neuron 2012

Keiji Miura
三浦 佳二 (東北大学)


Near zero noise correlations underlie efficient population codes in olfactory cortex

Neural representations can in general be elaborated over ensembles of neurons. In the simplest case, integration of spikes across neurons can improve signal to noise.However, positive inter-neuronal correlations in noise (trial-to-trial variability) curtail the benefits of integration, a factor thought to play a major role in the neural coding of visual stimuli (Zohary et al., 1994).
Here we investigated the impact of noise correlations in the odor coding in the rat anterior piriform cortex (aPC) by combining the tetrode recording and simulation.Surprisingly,whereas noise correlations in visual cortex are substantial (0.1-0.2), in aPC they were near zero even for pairs having similar odor tunings (mean responses).Importantly, noise correlations in aPC were dynamic, being lower during odor presentation and higher before odor presentation. In the simulation, the correlated noise drastically degraded the odor representation measured as the decoding accuracy. Together, decorrelated noise structures through dynamical processes during active sampling are important components of efficient neural representations of odor in the aPC.

Reference:
Odor Representations in Olfactory Cortex: Distributed Rate Coding and Decorrelated Population Activity
Keiji Miura, Zachary F. Mainen and Naoshige Uchida,
Neuron 74, 1087–1098, 2012


Shinya Yamamoto
山本慎也
(産業技術総合研究所・AIST)

Integrating and segregating sensory information

We understand the world by collecting multiple sensory information. Such information has several aspects, for example, the types of modalities (e.g., visual, auditory, and tactile) and the properties of events (e.g., what, where, when). Those signals should be sometimes integrated and sometimes segregated to reconstruct external events in the brain. However, it is still unclear how the brain assesses the relationship between multiple sensory signals. In this symposium, I will talk about our two recent studies to address this question. First, I will introduce our psychophysical study showing that both the integration and segregation mechanisms are at work in the multimodal processing and are balanced with each other. Second, I will present the evidence from our physiological study demonstrating that both ‘what’ and ‘where’ information is integrated in the tail part of the caudate nucleus, and that the integrated signal is transformed to saccadic eye movements to particular visual objects in particular locations. Finally, I will raise the future questions to elucidate the mechanisms underlying the integration and segregation of sensory signals.

Reference:

Reference;
Yamamoto S, Miyazaki M, Iwano T, Kitazawa S. Bayesian calibration of
simultaneity in audiovisual temporal order judgments. PLoS One. 2012;7(7):e40379.
Epub 2012 Jul 9.

Yamamoto S, Monosov IE, Yasuda M, Hikosaka O. What and where information in
the caudate tail guides saccades to visual objects. J Neurosci. 2012 Aug
8;32(32):11005-16. doi: 10.1523/JNEUROSCI.0828-12.2012.

Shinya Yamamoto
山本真也
(京都大学霊長類研究所「京都大学野生動物研究センター熊本サンクチュアリ」)


ヒト科3種比較からみる協力と文化のメカニズム・進化


かつて、利他行動と文化の存在はヒトに特有のものと考えられてきた。しかし、近年の類人猿研究はこのヒトとヒト以外の垣根を崩しつつある。私は、とくに認知メカニズムの観点からこの問題に取り組んできた。飼育チンパンジーを対象とした利他行動の実験からは、「要求に応じるチンパンジー、自発的に助けるヒト」という仮説を提唱している。チンパンジーも他者の欲求に合わせた柔軟な手助け行動をみせるが、たとえ状況から他者の欲求を理解していても自発的に助けることは稀である。これは互恵的文脈においても同様であることが実験から示されている。文化にかんしても、これら類人猿とヒトとの間には共通点と相違点がみてとれる。すでにレパートリーに含まれる行動から新たな行動が生まれ、それが個体間・世代間に伝播することで文化が発展するという累積文化進化はヒトに特有であると考えられている。しかし、その認知的基盤についてはチンパンジーにも認められることが明らかになりつつある。ヒトは、異文化集団間において、交易などによる協力関係を結ぶと同時に殺し合いの戦争もする。このような両極的なヒトの特質の進化についても、比較認知科学の視点から議論してみたい。

Reference:

Yamamoto, S., Humle, T., & Tanaka, M. (2012) Chimpanzees’ flexible
targeted helping based on an understanding of conspecifics’ goals.
Proceedings of the National Academy of Sciences, 109 (9), 3588-3592.
(doi: 10.1073/pnas.1108517109)

Yamamoto, S., Humle, T., & Tanaka, M. (2012) Chimpanzees’ flexible
targeted helping based on an understanding of conspecifics’ goals.
Proceedings of the National Academy of Sciences, 109 (9), 3588-3592.
(doi: 10.1073/pnas.1108517109)

Yamamoto, S., Humle, T., & Tanaka, M. (2012) Chimpanzees’ flexible
targeted helping based on an understanding of conspecifics’ goals.
Proceedings of the National Academy of Sciences, 109 (9), 3588-3592.
(doi: 10.1073/pnas.1108517109)

Yamamoto, S., & Takimoto, A. (2012) Empathy and fairness:
psychological mechanisms for eliciting and maintaining prosociality
and cooperation in primates. Social Justice Research, 25(3), 233-255.

Yamamoto, S., Humle, T., & Tanaka, M.(2009) Chimpanzees help each
other upon request. PLoS ONE, 4 (10): e7416.
doi:10.1371/journal.pone.000741

Yamamoto, S., & Tanaka, M.(2009)Do chimpanzees (Pan troglodytes)
spontaneously take turns in a reciprocal cooperation task? Journal of
Comparative Psychology, 123 (3), 242-249.

その他の論文情報等は以下のサイトにも掲載しております。
http://www.wrc.kyoto-u.ac.jp/kumasan/ja/members/shinya-yamamoto.html

Masataka Watanabe
渡辺正峰 (東京大学大学院)


視覚的意識の内容変化に応ずる脳部位

視覚的意識の脳神経機序の解明に向けて数多くの研究がなされてきた。本発表では「意識内容の変化に応じる脳部位」をとりあげる。両眼視野闘争を用いた従来研究により、低次視覚系のV1、LGNから高次のIT , MST, PFCに至るまで、「見え」の有無に応じて脳活動が変動することが示され、意識内容の変化に応じる神経活動が視覚系全体に広がっているとの見方が一般的となっている。そこで私たちは、視覚的注意の効果が結果に干渉していた可能性に着目した。つまり、従来研究では注意が独立に操作されていなかったため、「見え」の有無に合わせて 視覚的注意の度合いが増減し、それが脳活動 に影響を及ぼしていたとの懸念だ。実験手法としては、Tsuchiya & Kochによる Continuous Flash Suppressionをもとに視覚ターゲットへの注意の有無と「見え」の有無を独立に操作したもとで、視覚ターゲットに相当するfMRI信号を解析した 。その結果、V1ボールド信号が注意の変化には応ずるが、「見え」の有無には応じないことが明らかとなり、視覚的意識を担う神経機序の下限が示唆された。

Reference:
http://www.sciencemag.org/content/334/6057/829.short


主催 包括型脳科学研究推進支援ネットワーク
日本神経回路学会 
ATR脳情報研究所
理化学研究所脳科学総合研究センター
沖縄科学技術大学院大学
心の先端研究のための連携拠点(WISH)構築
新学術領域研究
「質感認知の脳神経メカニズムと高度質感情報処理技術の融合的研究」
「精神機能の自己制御理解にもとづく思春期の人間形成支援学」
「予測と意思決定の脳内計算機構の解明による人間理解と応用」
「ヘテロ複雑システムによるコミュニケーション理解のための神経機構の解明
構成論的発達科学 —胎児からの発達原理の解明に基づく発達障害のシステム的理解−
最先端研究開発支援プログラム
「心を生み出す神経基盤の遺伝学的解析の戦略的展開」
「複雑系数理モデル学の基礎理論構築とその分野横断的科学技術応用」
科学技術振興機構CREST「脳神経回路の形成・動作原理の解明と制御技術の創出」
科学技術振興機構PRESTO「脳情報の解読と制御」
科学技術振興機構ERATO「岡ノ谷情動情報プロジェクト」
大阪大学 グローバルCOEプログラム「認知脳理解に基づく未来工学創成」
玉川大学 グローバルCOEプログラム「 社会に生きる心の創成」
特別推進研究「神経ダイナミクスから社会的相互作用に至る過程の理解と構築による構成的発達科学」
理化学研究所次世代計算科学研究開発プログラム脳神経系チーム
理化学研究所脳科学総合研究センター
共催 東京大学最先端数理モデル連携研究センター
北海道大学脳科学研究教育センター

 
©2012 Mechanism of Brain and Mind