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SUMMARY

How information encoded in neuronal spike trains is
used to guide sensory decisions is a fundamental
question. In olfaction, a single sniff is sufficient for
fine odor discrimination but the neural representa-
tions on which olfactory decisions are based are
unclear. Here, we recorded neural ensemble activity
in the anterior piriformcortex (aPC) of rats performing
an odor mixture categorization task. We show that
odors evoke transient bursts locked to sniff onset
and that odor identity can be better decoded using
burst spike counts than by spike latencies or
temporal patterns. Surprisingly, aPC ensembles
also exhibited near-zero noise correlations during
odor stimulation. Consequently, fewer than 100 aPC
neurons provided sufficient information to account
for behavioral speed and accuracy, suggesting that
behavioral performance limits arise downstream of
aPC. These findings demonstrate profound trans-
formations in the dynamics of odor representations
from the olfactory bulb to cortex and reveal likely
substrates for odor-guided decisions.

INTRODUCTION

Active sampling is an important component of sensory process-
ing that can result in chunking of information into short, discrete
epochs of a fraction of a second, as exemplified by visual fixa-
tions. In olfaction, rodents exhibit rapid stereotyped respiration
at theta frequency (called sniffing) during active exploration
(Wachowiak, 2011; Welker, 1964). Behavioral experiments
have shown that a single rapid sniff can support accurate
odor discrimination (Uchida and Mainen, 2003; Wesson et al.,
2008), suggesting that each sniff generates a relatively com-
plete ‘‘snapshot’’ of an olfactory world, and constitutes a unit
of odor coding (Kepecs et al., 2006). Despite these observations,

however, how sensory information is represented on this
timescale and how it is transformed in the brain to ultimately
control behavior remain unclear.
Studies in the olfactory bulb, the first relay in the olfactory

neural pathway, have shown that odor stimulation triggers
diverse temporal patterns of activity at the level of the olfactory
nerve inputs and mitral/tufted cells, the exclusive outputs of
the olfactory bulb (Cang and Isaacson, 2003; Friedrich and
Laurent, 2001; Hamilton and Kauer, 1989; Junek et al., 2010;
Macrides and Chorover, 1972; Margrie and Schaefer, 2003;
Meredith, 1986; Spors and Grinvald, 2002; Wehr and Laurent,
1996; Wellis et al., 1989). During sniffing, spiking activity of
mitral/tufted cells show diverse and reliable temporal patterns
at the resolution of tens of milliseconds (Carey and Wachowiak,
2011; Cury and Uchida, 2010; Shusterman et al., 2011). These
dynamic response patterns, in particular, those in the initial
portion of the response (!100 ms), convey substantial odor
information compared to the total spike counts contained in
the entire period of a theta sniff cycle (Cury and Uchida, 2010),
suggesting that timing of spikes plays a critical role in rapid
and accurate odor coding in the olfactory bulb.
Compared to the olfactory bulb, relatively little is known about

how odor information is coded by neurons in the olfactory cortex.
Neurons in the olfactory bulb project broadly to the cortex
without apparent topography (Ghosh et al., 2011; Miyamichi
et al., 2011; Nagayama et al., 2010; Ojima et al., 1984; Sosulski
et al., 2011) and odor stimulation activates widely distributed
neurons in the cortex again without apparent topography (Illig
and Haberly, 2003; Rennaker et al., 2007; Stettler and Axel,
2009), suggesting that the olfactory cortex might use a different
mechanism for odor coding than the olfactory bulb. To elucidate
coding principles in the olfactory cortex that underlie rapid olfac-
tory decisions, here we examined (1) how active sniffing shapes
neural responses, (2) whether spike times or rate carry more
information, and (3) the nature of odor coding at the ensemble
level. We show that odor inhalation triggers a transient burst of
spikes time-locked to inhalation onset. In contrast to the olfac-
tory bulb, timing of spikes conveyed little additional information
compared to the total spike counts, demonstrating a profound
transformation of coding mechanisms between the olfactory
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bulb and cortex. Furthermore, odor stimulation reduced corre-
lated noise among neurons, which facilitated the efficiency of
population coding in the olfactory cortex.

RESULTS

We recorded spiking activity of olfactory cortical neurons in rats
while simultaneously monitoring their sniffing and performance
in a two-alternative choice odor mixture categorization task
(Uchida and Mainen, 2003; Figure 1A). The stimuli consisted of
three or four odor pairs with each odor delivered either alone
(100/0, 0/100) or in mixtures (68/32, 32/68) (Figure 1B). All stimuli
were randomly interleaved and one odor of each pair was
assigned to the right and the other to the left choice port, with
mixtures rewarded according to the dominant component. One
set of subjects (n = 5) performed a reaction time version of the
task, taking one to two sniffs between odor onset and response
initiation (1.71 ± 0.01; see Figure S1B available online; Uchida
and Mainen, 2003). A second set of subjects (n = 3) was trained
to wait for a tone (Rinberg et al., 2006) at 700 ms delay from odor
valve onset in order to enforce a longer odor sampling period
(Figure 1C) and more sniffs (3.84 ± 0.03, p < 0.05 compared
to reaction time paradigm; Figure S1B). In both paradigms,
rats sniffed at theta frequency during odor sampling (7.18 ±
0.29 and 6.35 ± 0.27 s"1, respectively; Figure 1C). Task perfor-
mance accuracy was higher for pure than mixture stimuli across
all pairs, but was independent of the training paradigm and of the
number of sniffs taken within a given paradigm (Figures 1D, S1C,
and S1D). Thus, as previously reported (Uchida and Mainen,
2003), a single sniff was sufficient for maximal performance by
rats in this odor mixture categorization task.

We recorded from ensembles of up to 21 neurons (9.4 ±
4.7, mean ± SD) in the anterior piriform cortex (aPC) using chron-

ically implanted tetrodes during performance of the above tasks
(see Experimental Procedures for details). From a total of 460
well-isolated single neurons, 179 neurons recorded using a fixed
panel of 6 odorants formed the primary data set for the subse-
quent analyses. Given the similarity of behavioral performance
in reaction-time and go-signal paradigms, data from these ex-
periments was pooled (91 neurons from the reaction time para-
digm and 88 neurons from the go-tone paradigm).

Sniffing ofOdors Triggers Transient SpikeBursts Tightly
Locked to Inhalation Onset
Previous studies have noted relatively brief, burst-like responses
in PC (McCollum et al., 1991;Wilson, 1998), but these studies did
not explicitly compare neural responses with respiration. We
found that odor responses in aPC consisted typically of a tran-
sient burst of spikes time-locked to the onset of odor inhalation.
Aligning spike times relative to the onset of the first sniff after
odor onset revealed a much tighter temporal organization than
was apparent by aligning on odor valve opening (Figures
2A–2C). Indeed, some responses were detectable only using
sniff locking (Figures S2A and S2B). Responses peaked rapidly
(Tpeak: 99 ± 45 ms from the first inhalation onset, median ± SD;
Figure 2D) and returned to baseline rapidly (full-width at half
max: 32 ± 24 ms, median ± SD; Figure 2E). Thus, odor-evoked
transients lasted approximately one sniff cycle (158.1 ±
40.2 ms, mean ± SD).

Odor Stimulation Evokes Broadly Distributed,
Moderately Sparse Ensemble Neurons
Single neurons in aPC showed robust and stimulus-specific
responses to odor stimuli (Figure 3A). Relatively little selectivity
for spatial choices (left versus right) or reward outcomes was
observed (Figure 3B). As a population, 45% of aPC neurons
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Figure 1. Odor Mixture Categorization Task and Behavioral Performance
(A and B) Schematic of odor mixture categorization task. Rats were trained to respond to the left or right reward port depending on the dominant component in

a mixture. Task difficulty was varied by changing ratios of two odorants of a given odor pair (A/B: 0/100, 32/68, 68/32, 100/0). Three pairs of odors were used and

all the stimuli were randomly interleaved in a session. Odors are indicated by colors: yellow, caproic acid; red, 1-hexanol; blue, ethyl 3-hexenoate; magenta,

dehydroxy linalool oxide; green, citralva; cyan, cumin aldehyde. Intermediate colors represent binary mixtures of the pure odors.

(C) Task timing and respiration patterns. An odor was delivered in the odor port upon entry with a pseudorandom delay of 0.2–0.5 s. In a self-paced version of the

task (reaction time paradigm, black line), rats were allowed to respond as soon as they decided to leave the port. In the go-signal paradigm, rats had to wait until

a tone (go-signal, gray line) is played 700 ms after odor onset. Respiration patterns were monitored using a temperature sensor in the nasal cavity (the voltage

signal from a nasal thermocouple). The gray shading indicates the timing of odor sampling.

(D) Psychometric curve. The behavioral performance for the 12 odors (same color code as A) were fitted by a sigmoid curve as a function of mixture ratio. Task

performance accuracy was higher for pure compared to mixture stimuli.

See also Figure S1.

Neuron

Odor Coding in the Piriform Cortex

1088 Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc.



were activated by at least one of the six odors tested while 28%
were activated by two or more (Figures 3C, 3D, and S3; p < 0.05,
Wilcoxon rank-sum test). Conversely, each odor caused signifi-
cant responses in 16.5% ± 3.1% of aPC neurons (mean ± SD,
n = 6 odors, 10.3% excitatory, 6.2% inhibitory). The probability
of response of a piriform neuron to an odor was well-fit by
a binomial distribution with an extra allowance for nonrespond-
ing neurons (Figure 3D). We calculated a population sparseness
of 0.41 and a lifetime sparseness of 0.61 (see Experimental
Procedures), somewhat lower than previously observed in aPC
of anesthetized rats (Poo and Isaacson, 2009). Therefore, aPC
responses were observed in broadly distributed, moderately
sparse neural populations, largely consistent with previous
studies (Poo and Isaacson, 2009; Rennaker et al., 2007; Stettler
and Axel, 2009; Zhan and Luo, 2010).

Spike Counts Carried More Reliable and Rapid
Information Than Temporal Patterns
The latency and peak timing of aPC responses varied across
neurons and odors, raising the possibility that these parameters
may carry odor information (Cury and Uchida, 2010; Figures 4A
and 4B). However, both of these timing parameters were anti-
correlated with spike counts (Figures 4C and 4D), suggesting
that the information conveyed by these variables might be
redundant. In order to quantify the amount of information carried
by different response variables (i.e., latency, peak timing and

spike counts), we performed a decoding analysis to ask how
accurately an ideal observer could classify each individual trial
as belonging to one of six odor stimuli. By comparing decoding
accuracy using vectors consisting of different variables derived
from aPC responses, we compared the relative importance of
each coding strategy. As decoders (ideal observers), we used
linear classifiers including perceptrons and support vector
machines with linear kernels. These decoders essentially calcu-
late a weighted sum of inputs followed by a threshold and there-
fore resemble a biophysical decoding of aPC information that
might actually be implemented in downstream areas.
Input codes based on the total number or rate of spikes in a

sniff cycle provided the most reliable performance in odor
classification, whereas codes based on first spike latency or
peak timing performed significantly worse (Figure 4E). Further-
more, combining latency or peak timing with rate failed to
improve decoding accuracy. Although it has been postulated
that spike times may provide a more rapid coding mechanism
(Cury and Uchida, 2010; Gollisch and Meister, 2008; Thorpe
et al., 2001), we found that decoders using spike count actually
performed faster than those based on spike latency or peak
timing (Figure 4F), demonstrating that spike counts can convey
information both more quickly and in a more reliable manner.
Furthermore, decoding based on complete temporal patterns
of activity in a sniff cycle did little to improve decoding accuracy
(Figure 4G). Finally, using phase of spike occurrence with
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Figure 2. Sniffing of Odors Triggers Transient Spike Bursts Tightly Locked to Inhalation Onset
(A and B) Activity of an example aPC neuron. Raster plots represent neural activity with each row corresponding to a single trial (n = 37 trials) and each tickmark to

a spike. Peri-event histograms are overlaid (green and red, smoothed with a Gaussian filter with the standard deviation of 7.5 ms). Trials are aligned to onset of

odor valve opening (A) or first sniff after odor valve opening (B). In (B), periodic spontaneous activity before t = 0 that reflects sniffing is evident.

(C) Comparison of peak firing rates between the two alignment conditions (odor valve opening versus first sniff onset). Instantaneous firing rates were calculated

after smoothing the peri-event histogram using a Gaussian filter (SD: 7.5 ms). The arrow denotes the example in this figure (A and B). A baseline firing rate (0 to

0.5 s before odor valve onset) was subtracted for each neuron-odor pair. The peak firing rates are higher when triggered by the first inhalation onset (p < 10"10,

Wilcoxon signed-rank test).

(D) Histogram of peak timing. Data from 243 odor-responsive neurons.

(E) Histogram of temporal half width of peak firing. Same data as in (D).

See also Figure S2.
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respect to sniffing cycle instead of absolute time did not improve
the decoding accuracy (Figure 4H). Together, these results
suggest that spike rates or counts are the predominant carrier
of olfactory information in the aPC, and that the dependence of

odor coding on spike timing is greatly reduced compared to
the olfactory bulb (Cury and Uchida, 2010).

Information Conveyed by the Spike Counts Provided
in Burst Activity Can Account for the Speed
and Accuracy of Odor Discrimination
We next compared the performance of aPC populations
decoded using linear classifiers to the performance of the
animal. Decoding based on total spike counts in the first sniff
using the entire 179 neurons gave nearly perfect performance
on pure odors (Figures 5A and 5B). For both pure and mixture
stimuli, the accuracy of the classifier reached a level compa-
rable to that of the animal using only about 70 neurons (Fig-
ure 5A). Analysis of the time course of decoding using a short
sliding time window showed that the maximum information
could be read out from the initial burst of activity within
100 ms after the first inhalation onset and that the rate of infor-
mation dropped thereafter (Figures 5B and 5C). Comparing the
first and second sniff separately, spikes in the first sniff gave
significantly higher accuracy than those in the second sniff
or the last sniff before odor port exit (Figure 5D; p < 0.05,
c2 test), and using both the first and second sniff cycles resulted
in only a small increase in accuracy (Figure 5D). Therefore, spike
counts in ensembles of aPC neurons appear to be sufficient to
explain both the speed and accuracy of decisions in an odor
mixture discrimination task.

Spike Counts in Ensemble Activity Correlate with
Behavioral Choices
If firing rates across ensembles of aPC neurons are used by the
brain to form behavioral responses, and if sensory uncertainty
reduces performance accuracy, as in the mixture trials, then
we might be able to observe trial-by-trial correlations between
decoding based on these neural representations and the
animals’ choices. To test this idea, we first compared neuronal
firing rates on correct and error choices for a given stimulus,
a measure analogous to ‘‘choice probability,’’ a measure that
has been used previously to test the role of a neural representa-
tion in behavior (Britten et al., 1996; Cury and Uchida, 2010;
Parker andNewsome, 1998).We found a low average correlation
between the firing rates of individual neurons and subjects’
choices (avg. choice prob. = 0.51 ± 0.011; Figures 5E and 5F).
This correlation was somewhat smaller than those found in
previous observations in visual cortex (0.53–0.7; Britten et al.,
1996; Cohen and Newsome, 2009; Dodd et al., 2001; Uka and
DeAngelis, 2004). However, if the information for choices is
distributed across a large number of uncorrelated aPC neurons
such that the contribution of single neurons is diluted (Cohen
and Newsome, 2009), then we reasoned that the accuracy of
decoding based on simultaneously recorded ensembles may
be correlated on a trial-by-trial basis with behavioral choices.
Indeed, we found that patterns of spike counts across aPC
neurons in correct trials provided significantly higher decoding
accuracy than patterns in error trials (Figure 5G; p = 0.030,
Wilcoxon test). In contrast, decoding using peak timing or
latency did not show a significant difference between correct
and error trials (Figures 5H and 5I; p > 0.05, Wilcoxon test).
Therefore, spike rates in aPC not only carry substantial stimulus
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Figure 3. Moderately Sparse, Distributed Population Odor
Responses in aPC
(A) Odor-evoked responses of an example neuron during first sniff cycle after

odor onset. The bottom colors indicate odors tested (same colors as in Fig-

ure 1B). The middle plot shows the firing rates in first sniff after odor valve

opening (40–160 ms from inhalation onset) as a function of odor stimuli. The

dashed line indicates the firing rate at the preodor sniff. The top colors indicate

the magnitude of odor response to each stimulus. The response magnitudes

were calculated as a comparison with blank (no odor) trials using signal

detection analysis (area under the receiver operating characteristics curve,

auROC; see Experimental Procedures). Scale is shown in (C) (red: excitatory

response with perfect discriminability, black: no discriminability [no response],

blue: inhibitory response with perfect discriminability).

(B) Statistical analysis of neural activity during first sniff (40–160 ms window

from sniff onset) (three-way ANOVA performed for each neuron with factors of

stimulus identity, choice direction and reward outcome, p < 0.05). Neural

responses during this period mostly reflect odor stimuli but not behavioral

choice or reward outcomes.

(C) Summary of odor responses (179 neurons). Odor response magnitudes

were indicated as in (A), top (also see color scale). Nonsignificant responses

(p > 0.05, Wilcoxon rank-sum test) are shown in black. The example neuron in

(A) is indicated by the arrow. Neurons are sorted by preodor firing rates in an

increasing order.

(D) Histogram of number of pure odorants that activated a given neuron

(p < 0.05, Wilcoxon rank-sum test). Two lines represent binomial fits with

(purple; nonresponsive p0 = 0.50, the other neuron respond with p = 0.16/

(1-p0) = 0.33) or without allowance of extra nonresponsive neurons (orange; p =

0.16). As a population, 45% of aPC neurons were activated by at least one of

the six odors testedwhile 28%were activated by two ormore (<0.05,Wilcoxon

rank-sum test).

See also Figure S3.
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information, they are also correlated at an ensemble level with
the behavioral choices of the animal.

Near-Zero Noise Correlations during Odor Inhalation
The above results indicate that odor information is coded by
a large number of neurons in aPC. A critical feature of information
coding in neuronal ensembles is the structure and magnitude
of correlated fluctuations in firing, which can affect the ability
of downstream neurons to decode the information. A simple
example of ensemble decoding is population averaging or pool-
ing. By this strategy, neuronal noise can, in principle, be elimi-
nated by averaging the activity of a large number of neurons.
However, if noise is not random across neurons, that is, if
neural activity cofluctuates across neurons, the benefit of pool-
ing can be significantly curtailed (Cohen and Kohn, 2011; Zohary
et al., 1994). The choice probability analysis suggested that aPC

neurons are actually veryweakly correlated. To testmore directly
whether such correlations affect representations of odors in the
olfactory cortex, we analyzed the ‘‘noise correlations’’ between
pairs of simultaneously recorded aPC neurons (see Experimental
Procedures). Noise was defined as the trial-to-trial variability of
spike counts in a sniff cycle (40–160 ms after the first sniff onset)
around the mean response under a given stimulus condition.
Noise correlation was defined as the correlation coefficient
between the noise of two neurons to multiple presentations of
a given odor stimulus. We found surprisingly low noise correla-
tions among aPC neurons (0.0046 ± 0.0988; mean ± SD; n =
936 pairs; Figures 6A and S5). In fact, both the mean and the
standard deviation of noise correlations of the aPC data were
similar to trial-shuffled data in which all correlations are removed
(0.00011 ± 0.0870; Figures S5C–S5F), suggesting that deviations
from zero were mostly due to the effect of finite sample size
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Figure 4. Rapid and Accurate Readout of Odor Information Based on Spike Counts in First Sniff
(A) Activity of an example neuron in response to two different odors. This neuron responded to the two odors with different temporal profiles.

(B) Trial-to-trial relationship of peak timing and total spike counts (same neuron and odors as in A). Each dot corresponds to one trial. Peak time is defined as the

time when the smoothed firing rate profile reaches the maximum firing rate within the first sniff cycle.

(C and D) Correlation coefficients between spike counts and peak timing (C) and latency (D) for 908 neuron-odor pairs. Black bars indicate significant correlations

(p < 0.05).

(E) Odor decoding accuracy of a linear decoder based on different firing features. Information contained in ensemble neural activity (179 neurons) in one sniff

(40–160 ms from inhalation onset) was quantified by the accuracy with which a linear classifier (support vector machine with a linear kernel) can correctly identify

one out of six odors on a trial-by-trial basis (see Experimental Procedures). Decoding accuracy for six pure odors (black) and six odor mixtures (gray) are plotted

separately. Latency: time of first spike. Peak: time of peak firing rate. Count: total spike count. L&C: latency and spike count. P&C: peak time and spike count.

(F) Odor decoding accuracy with increasing window lengths. Decoding using peak timing does not result in any faster performance than that using only spike

counts. A total of 179 neurons are used. The decoding is based on trials with pure odors. Chance performance level is 16.67% (=1/6, horizontal thin line). Black

horizontal dashed line indicates the behavioral performance level for pure odors. Three curves (L&C, P&C, and Count) are highly overlapping.

(G) Odor decoding accuracy of a linear classifier, plotted as a function of bin size (10 ms to 160 ms, i.e., temporal resolution). A 160ms time window after the first

sniff was first equipartitioned into smaller sized bins (80, 40, 20, or 10ms, respectively) and then the spike counts in all the bins were used for classification. Black,

pure; gray, mixture stimuli. Black and gray horizontal dashed lines indicate the behavioral performance levels for pure and mix odors, respectively.

(H) Odor decoding accuracy based on spike counts and phases for pure and mixture trials. Spike time: spike counts in 160 ms 3 1 bin. Phase: spike counts in

eight bins equipartitioning the first sniff cycle. Note that bin widths vary by trials in Phase. For fair comparisons, decoding accuracy was plotted against the mean

number of spikes per trial instead of the number of neurons.
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(Ecker et al., 2010). Moreover, we observed no dependence of
the magnitude of noise correlations on the number of evoked
spikes over a range of rates <5 to >100 spikes , s"1 (Figures
S5A and S5B). Therefore, near-zero noise correlations in aPC

were not a consequence of low firing rates (Cohen and Kohn,
2011; de la Rocha et al., 2007; Kohn and Smith, 2005).
In the neocortex, neighboring neurons with similar stimulus

tuning tend to exhibit correlated trial-by-trial fluctuations in firing
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Figure 5. Information Conveyed by the Spike Counts in the Burst Activity Can Account for the Speed and Accuracy of Odor Discrimination
(A) Decoding accuracy as a function of the number of neurons. Total spike counts within 40–160ms after the first sniff onset were used. Black: pure; gray: mixture

stimuli. Dashed lines indicate behavioral performance levels.

(B) Time course of odor decoding accuracy. A vector consisting of instantaneous spike counts of 179 neurons in a sliding window (width, 50 ms; step, 5 ms) was

used for the input to a classifier. Training of the classifier and testing were done at every time point.

(C) Time course of odor decoding accuracy after the second sniff onset.

(D) Odor decoding accuracy at different sniff cycles. 1, first sniff; 2, second sniff; L, last sniff before odor port exit. +, sum of the spike counts from first and second

sniffs. &, spike counts from the first and second sniffs are treated as independent inputs to a classifier. Note that the last sniffs contain first or second sniff

depending on how many sniff the animal took in a given trial. The neural response at the first sniff is more informative than the second and the last sniffs.

Combining first and second sniffs improved decoding accuracy only a little (statistically not significant either for pure or mixture odors, p > 0.05, c2 test).

(E) Comparison of the responses of an example neuron to the same odor on correct trials and error trials.

(F) Choice probabilities: correlations between a trial-to-trial variability in neural activity and a choice toward neuron’s preferred direction. Only mixture odor trials

were used to obtain a larger number of error trials. The fraction of neurons with significant choice probabilities >0.5 is significantly larger than the fraction with

significant choice probabilities <0.5 (p < 0.05, c2 test) although the mean choice probability was not significantly larger than 0.5 (Wilcoxon sign-rank test, p > 0.5).

A neuron’s preferred choice direction was determined as a direction for a pure odor with significantly higher firing rate than the paired pure odor. Only neuron-

mixture odor pairs where two pure odors showed significantly different responses (area under receiver operating characteristic curve >0.7 or <0.3) and with

numbers of trials for each choice more than five were used for the analysis.

(G–I) Odor decoding accuracy for correct and error trials using simultaneously recorded ensemble neurons (n = 19 sessions). Total spike counts within 40–160ms

(G), Peak time (H) and latency (I) from the first sniff onset were used. Only trials with mixture odors, where most of error trials are available, were used. A classifier

was first trained using correct trials, and decoding accuracy was obtained using test trials that are composed of correct or error trials. p < 0.05 for spike counts

(Wilcoxon test).

See also Figure S4.
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rate (Bair et al., 2001; Cohen and Kohn, 2011; Zohary et al.,
1994), thought to arise from common inputs, and it has been
postulated that these ‘‘structured’’ or ‘‘limited-range’’ correla-
tions are particularly detrimental to the efficiency of population
coding (Averbeck et al., 2006; Sompolinsky et al., 2001). We
therefore examined whether noise correlations between aPC
neurons are low even when their odor tuning is similar. To quan-
tify the similarity of odor tuning between pairs of neurons,
we calculated the correlation coefficient of the mean odor
responses across all 12 stimuli used (i.e., signal correlation).
This analysis showed that signal correlations were low both for
aPC neurons recorded on the same tetrode and for those re-
corded on different tetrodes (p > 0.05, Wilcoxon rank-sum test;
Figure 6B). Similarly, noise correlations were near-zero regard-
less of whether neurons were recorded on the same or different
tetrodes (p > 0.05, Wilcoxon rank-sum test; Figure 6C). Most
importantly, the noise correlations of pairs of aPC neurons
were independent of their signal correlations (regression slope:
0.0156 ± 0.0090, not significantly different from zero, p > 0.05;
Figure 6D). These results suggest that, during odor stimulation,
aPC neurons act largely as independent encoders regardless
of their distance or the similarity of their odor tuning.

Odor Inhalation Quenches Noise Correlations
Neuronal variability and noise correlation are not static, but can
be modulated by attentional state (Cohen and Maunsell, 2009;
Mitchell et al., 2009), perceptual learning (Gu et al., 2011), and
stimulus input (Bhandawat et al., 2007; Churchland et al.,
2010; de la Rocha et al., 2007; Kazama andWilson, 2009). There-
fore, in order to gain insight into how near zero noise correlations
arise in aPC, we tested how trial-to-trial correlations across
neurons are modulated during the course of events in each trial.
For this analysis, since odor stimuli were not always present,
we calculated the correlation coefficients of spike counts without
subtracting the mean responses of each stimulus condition (see
Experimental Procedures for more details). We found that when
rats begin active sampling (sniffing) in anticipation of odor
presentation, the aPC population was globally activated, with
the mean population firing rate increasing by around 30% (Fig-
ure 7A). Surprisingly, during the same period the mean pairwise
correlation across the entire population dropped, implying
a possible positive impact on population coding (Zohary et al.,
1994). However, correlations between similarly tuned pairs
increased (Figures 7B–7D and S6A–S6C; regression slope,
0.0916 ± 0.0092, significantly different from zero, p < 0.01),
implying a possible negative impact on population coding
(Sompolinsky et al., 2001). In order to estimate the net effect,
we performed decoding analysis using simulated data in which
spike counts obtained during odor stimulation were trial-shuffled
to generate noise correlation structures with different means and
signal correlations while preserving the mean odor response
profile of individual neurons (see Experimental Procedures for
details). We found that correlations of the type observed during
the pre-odor-sampling period, had they persisted into the
odor-sampling period, would have significantly eroded the effi-
cacy of decoding, reducing classifier performance by more
than 5%–10% (p < 0.01, t test; Figures 8A–8C and S7).We calcu-
lated that 2–3 times more neurons would have been required to
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(A) Histogram of noise correlations. Noise correlations were calculated using

spike counts in the first sniff cycle after odor onset (40–160 ms). A similar

distribution of noise correlations was obtained after trial-shuffling (magenta),

indicating that most neuron pairs had zero noise correlations. Black bars

indicate correlations significantly different from zero (p < 0.05).

(B) Signal correlations (similarity in odor response tuning for a pair of neurons)

compared between neuron pairs from same (S) and different (D) electrodes.

Neuron pairs from same electrode showed slightly higher signal correlations

(p > 0.05, Wilcoxon rank-sum test). The error bars are SEM across neuron-

odor pairs.

(C) Noise correlations compared between neuron pairs from same and

different electrodes. There was no difference in noise correlations (p > 0.05,

Wilcoxon rank-sum test). The error bars are SEM across neuron-odor pairs.

(D) No dependency between noise correlations and signal correlations.

Neuron pairs recorded from same (S) and different (D) electrodes are indicated

by black and orange dots, respectively. Neither the slope nor intercept of the

regression lines were significantly different from 0 (red and black lines,

p > 0.05, linear regression), indicating no relationship between noise correla-

tions and signal correlations.

See also Figure S5.
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achieve the same level of decoding performance had pre-odor
correlation levels been maintained (Figure 8D). The simulation
also indicated that the effects would be even larger with larger
ensembles. We also found that trial-to-trial variability in spike
count, as measured by the Fano factor and the coefficient of
variation, was significantly reduced by odor onset (Figures S6D
and S6E). Thus, potentially deleterious population correlations
are increased during the period of high sniffing preceding odor
onset but these correlations are quenched during the arrival of
the stimulus (Churchland et al., 2010).

DISCUSSION

Transformation of Odor Representation between the
Olfactory Bulb and Piriform Cortex
Together with recent studies of neural coding in the olfactory
bulb (Carey and Wachowiak, 2011; Cury and Uchida, 2010;
Shusterman et al., 2011), this study demonstrates that odor
representations are profoundly transformed between the bulb
and the aPC. While these studies show that odor responses in
the olfactory bulb exhibit complex temporal patterns carrying
stimulus information, here, we show that those in the aPC consist
primarily of a simple burst of firing, locked to respiration. Further-
more, the baseline firing rates are higher in the olfactory bulb
compared to the piriform cortex (12.9 ± 6.4 Hz in the olfactory
bulb; 6.15 ± 9.01 Hz in the aPC; mean ± SD; Cury and Uchida,
2010, and the present study). As a consequence, whereas in
the olfactory bulb extracting information from mitral/tufted cells
requires decoding of temporal patterns (Cury and Uchida,
2010), in the aPC most odor information can be read out using
only spike counts of neurons.
Why might the olfactory bulb and cortex areas use different

strategies for odor coding? One important consideration is the
substantial anatomical differences between the two areas: while
a relatively small number of neurons (20–50 mitral cells) transmit
odor information from each of the approximately 1000 input
channels (glomeruli) in the olfactory bulb, this information is
broadcast to an olfactory cortex that contains an estimated
two orders of magnitude more neurons (Shepherd, 2004).
Because of this expansion in coding space the necessity to
maximize the rate of information transmitted per neuron and
per unit time in the olfactory bulb will be much greater than in
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(B) Mean correlation as a function of task epochs. The error bars are for

neuron-odor pairs.

(C) Regression slopes for the trial-to-trial correlation and signal correlation

relationship as a function of task epochs. Trial-to-trial correlations were

computed at each epoch while signal correlations were computed at the first

sniff (generalized linear model with Holm method). The error bars are SEM

across neuron-odor pairs.

(D) Trial-to-trial correlations as a function of signal correlations. Two task

epochs, preodor (green) and first sniff (red), are plotted separately (p < 0.05 for

slopes, generalized linear model). The error bars are SEM across neuron-odor

pairs.

See also Figure S6.
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the aPC. The cortex can therefore better afford to employ a rate-
based coding strategy based on a larger number of neurons and
a widely distributed code. One significant advantage of rate-
based code over temporal code is that downstream areas can
more readily read out such a code or combine it with other kinds
of information encoded in rates. This might then facilitate
proposed functions of the piriform cortex such as forming asso-
ciative memories (Franks et al., 2011; Haberly, 2001).
The mechanism of the temporal-to-rate transformation

remains to be determined. In insects, temporally dynamic
responses in the antennal lobe (AL, considered equivalent to
the olfactory bulb) are transformed into sparse responses in
the mushroom body (MB, considered equivalent to the PC).
Various mechanisms have been proposed to underlie this pro-
cess, including (1) oscillatory spike synchronization, (2) short
membrane time constants of MB neurons, (3) feedforward inhibi-
tion, and (4) highly convergent connectivity between the AL
and MB (Perez-Orive et al., 2002, 2004). In zebrafish, different
mechanisms appear to shape the responsiveness of cortical
neurons: neurons in the dorsal telencephalon (Dp) effectively
discard information about synchronous firing in the olfactory
bulb due to cortical neurons’ slow membrane time constants
and relatively weak feedforward inhibition (Blumhagen et al.,
2011). It will be important to examine whether PC neurons in
mammals are tuned to temporal patterns of activity in the olfac-
tory bulb (Carey and Wachowiak, 2011; Cury and Uchida, 2010;
Shusterman et al., 2011), and if so, which aspects of temporal
patterns are important.

Neural Substrate for Rapid Olfactory Decisions
Our findings bear on the relationship between psychophysical
limits and neuronal representations, a central subject in sensory
physiology (Parker and Newsome, 1998). We found that, by
monitoring spikes from as few as 50–100 aPC neurons, a simple
decoder based on firing rates could extract more than enough
information in a single sniff cycle to account for the behavioral
accuracy of rats in the odor categorization task. We also
found that while single neuron activity was not on average
different between correct and error trials (low average ‘‘choice
probability’’), population activity-based decoders performed
significantly better on correct compared to error trials. Rate
information peaked within 100 ms during the first sniff, and
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(B and C) Decoding accuracy using decorrelated (black, gray) and correlated

ensembles (green, light green) as a function of number of neurons. Pure (B) and

mixture (C) odors were plotted separately. The mean and slope of the corre-

lations observed during the pre-odor period were used to simulate correlated

ensembles. The dashed lines denote the animals’ behavioral performance

for each condition. The decorrelated ensemble results are the same as in

Figure 5A.

(D) Equivalent ensemble sizes. The number of neurons required to achieve the

same decoding accuracy between decorrelated and correlated ensembles

were obtained from (B) and (C). The dotted lines represent ratios (3:1, 2:1, 1:1)

of the numbers of neurons between decorrelated versus correlated ensem-

bles. As the size of a population increases, disproportionately more neurons
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See also Figure S7.
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aggregating information over longer periods in multiple sniff
cycles failed to significantly augment decoding performance,
providing an explanation for the rapid speed of olfactory discrim-
ination performance and the lack of speed-accuracy tradeoff
over longer periods (Uchida andMainen, 2003). Therefore, these
observations provide substantial evidence linking a rate-based
population code to behavioral performance.

Near-Zero Noise Correlations Facilitate Odor Coding
We found that an optimal linear decoder of aPC neurons can
reach levels of performance superior to the animal itself using
<100 neurons out of the estimated population of around 106

neurons (Shepherd, 2004). The aPC clearly contains an
extremely robust representation of odor identity. What then ulti-
mately limits behavioral accuracy? While similar observations in
the visual system have attributed behavioral performance limits
to the reduced efficiency of pooling in the actual network of
neurons due to ensemble correlations (Shadlen et al., 1996;
Zohary et al., 1994), this appears not to be the case in the
aPC. During odor stimulation, aPC networks have near zero
mean noise correlation, more than one order of magnitude lower
than that generally reported in the neocortex (0.05–0.2; Cohen
and Kohn, 2011; Gawne and Richmond, 1993; Lee et al., 1998;
Zohary et al., 1994; Figure 6A), similar to that reported in the
primary auditory cortex of anesthetized rats (Renart et al.,
2010) and area V1 of awake monkeys (Ecker et al., 2010).
More importantly, aPC neurons also lack the positive relation-
ships between signal and noise correlations that are typically
observed (Bair et al., 2001; Gu et al., 2011; Zohary et al.,
1994). However, the absence of such correlations is not simply
due to the distributed connectivity of the olfactory cortex: Such
structured correlated activity can and does emerge prior to
odor onset and simulations demonstrated that such correlations
would have substantially reduced the efficiency of population
coding. However, we found when driven by odor stimulation,
these prestimulus correlations are quenched. While we cannot
rule out the possibility that additional correlations that we were
unable to measure with this data set might affect decoding,
behavioral performance in the odor mixture categorization task
appears to be limited neither by the level of noise of the sensory
representation nor by correlated fluctuations among the popula-
tion of neurons. We therefore conclude that the limits of perfor-
mance must be set either by the ability of downstream circuits
to accurately read out of these representations or by other
non-sensory sources of variability.

Whether prolonged odor sampling can improve the accuracy
of odor discrimination has been controversial. Some studies
have suggested that the accuracy of odor discrimination can
be improved with longer odor sampling over 500 ms (Rinberg
et al., 2006) or more (Friedrich and Laurent, 2001). It has been
suggested that the accuracy of discrimination of highly similar
odor pairs might depend on the refinement of odor representa-
tions through temporal evolution of neural activity (Friedrich
and Laurent, 2001) or through temporal integration of sensory
evidence. However, the result of the present study suggests
that these processes are unnecessary. These findings indicate,
instead, that performance accuracy is affected not only by stim-
ulus information but additionally by other task parameters that

may affect the ability of the animal to choose accurately
based on olfactory stimulus representations (H. Zariwala et al.,
2005, Soc. Neurosci., abstract). It remains to be seen whether
similar conclusions can be drawn in different olfactory tasks
such as odor detection, discrimination at low concentrations, or
more complex tasks. The present study indicates that neuronal
recording in animals performing these behavioral tasks will be
a critical step toward addressing these fundamental questions.

EXPERIMENTAL PROCEDURES

All procedures involving animals were carried out in accordance with NIH

standards and approved by the Cold Spring Harbor Laboratory and Harvard

University Institutional Animal Care and Use Committee (IACUC). All values

were represented by mean ± SEM unless otherwise noted.

Behavior
Rats were trained and tested on a two-alternative choice odor mixture

categorization task where water was used as a reward as described pre-

viously (Cury and Uchida, 2010; Uchida and Mainen, 2003). Odor delivery

was controlled by a custom-made olfactometer (Cury and Uchida, 2010;

Uchida andMainen, 2003). In total, eight rats were used. Five rats were trained

to perform in a reaction time version of the task (Uchida and Mainen, 2003),

and the other three rats in a go-signal paradigm (Rinberg et al., 2006) (see

Supplemental Experimental Procedures). Three rats (two of them trained

with go-signals) were tested on a standardized stimulus set of three odor pairs:

(1) caproic acid and citralva, (2) ethyl 3-hexenoate and 1-hexanol, and (3) dihy-

droxy linalool oxide versus cumin aldehyde (Figure 1B). Each of these odors

was diluted 1:10 in mineral oil, and further diluted by filtered air by 1:20

(1:200 total).

Neural Recording
After reaching asymptotic performance in behavioral training, each rat was

implanted with a custom-made multielectrode drive (Cury and Uchida, 2010)

in the left hemisphere in the aPC (3.5 mm anterior to bregma, 2.5 mm lateral

to midline) and a bipolar stimulating electrode in the olfactory bulb (Kashiwa-

dani et al., 1999; Schoenbaum and Eichenbaum, 1995) under anesthesia.

Extracellular recordings were obtained using six independently adjustable

tetrodes. To monitor sniffing, during drive implantation, a temperature sensor

(thermocouple) was implanted in one nostril (Cury and Uchida, 2010; Uchida

and Mainen, 2003).

SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.neuron.2012.04.021.
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Figure S1, related to Figure 1. Behavioral performance. 
A, Schematic of the two behavioral paradigms. In a reaction time (RT) paradigm, the rat was allowed to 
leave the odor port as soon as they made a decision. In a go-signal paradigm, a pure tone ( ) was played 
700 ms after odor valve onset. 
B, Histograms of number of sniffs taken during odor sampling period in the reaction time (black) and the 
go-signal (grey) paradigms. 
C, Odor sampling time for different conditions for a rat. : trials in which rats 
took one sniff during odor sampling. : trials in which rats took two sniffs during odor sampling. 
D, Performance accuracy for different conditions. Same symbols as in C. Note that the accuracy was 
independent of number of sniffs or presence of go-signal (longer odor sampling). 
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E, Sniff rate as a function of time from the odor port entry for a rat trained in a reaction time paradigm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S2, related to Figure 2. Tight locking to inhalation onset and transient responses are 
common features of aPC neurons. 
A & B, Activity of an example neuron in the same format as Figures 2A, B (N = 47 trials). This neuron 
responded with the occurrence of 1-2 spikes at the precise latency from sniff onset. This response is only 
evident when trials were aligned to sniff onset (B) but not when aligned to odor valve onset (A). 
C, Examples of transient odor responses. Peri-event time histograms (PETHs) of spikes for different 
neurons showing odor responses. Randomly chosen odor responsive neurons are shown. The mean peak 
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time for these examples is 90.8 ± 34.1(ms) and the mean half width is 33.2 ± 11.2 (ms). 
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Figure S3, related to Figure 3. Robust odor responses in aPC. 
A, Histogram of odor response magnitudes (changes in firing rate during the first sniff cycle). Blue: 
excitatory, red: inhibitory responses, respectively (P < 0.05; Wilcoxon rank sum test). 
B, Single neuron response magnitudes characterized by discriminability from blank trials. How accurately 
an observer can tell odor trials from blank trials in a trial-by-trial basis is quantified by the area under the 
receiver-operating characteristics curve (auROC). Spike counts in the first sniff (40-160 ms) after odor 
onset were used. 1: excitatory response with perfect discriminability, 0.5: no discriminability (no 
response), 0: inhibitory response with perfect discriminability. Colors indicate discriminability that is 
significantly different from chance performance (0.5) (P <0.05, Wilcoxon rank sum test). Note that single 
neurons can provide reliable information about the presence of an odor. 
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Figure S4, related to Figure 5. Odor decoding accuracy using different sets of correct and error 
trials for training a classifier.  
A, A mixture of all correct and error trials excluding test trials. 
B, A mixture of equal number of correct and error trials excluding test trials. 
C, Correct trials only (excluding test trials).  
Decoding accuracy is higher for correct trials when a classifier was trained by all trials or correct trials 
only.  When the same number of correct and error trials were used for training a classifier, the decoding 
accuracy matched between correct and error trial.  These results suggest that odor responses in correct and 
error trials are systematically shifted.  
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Figure S5, related to Figure 6. Small noise correlations regardless of firing rates of neurons and 
distribution of noise correlations after trial shuffling. 
A & B, Noise correlations as a function of mean firing rates of a pair of neurons. Noise correlations are 
small regardless of the firing rates. Two task epochs are shown (a: pre-odor, b: first sniff). The slopes of 
both regression lines (red) are not significantly different from zero (P > 0.05). 
C, Mean noise correlation for actual and shuffled data (5% confidence interval obtained from 1000 
repeats of shuffles). This shuffling analysis was performed in order to estimate the expectation from a 
population with zero noise correlations but with a limited data set of size matched to ours (Figure 6A). 
D, Standard deviation of noise correlation for actual and shuffled data. Note that the actual standard 
deviation is only slightly larger than those obtained after trial shuffling. 
E, Fraction of significant positive correlations for actual and shuffled data. Note that the actual fraction of 
significant correlation is only slightly larger than those obtained after trial shuffling. 
F, Fraction of significant negative correlations for actual and shuffled data. 
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Figure S6, related to Figure 7. Structured noise correlations during pre-odor and decorrelations 
during 1st sniff are observed regardless of the firing rates. 
A, Noise and signal correlations for neurons-odor pairs whose sum of firing rates is higher than 20Hz at 
the first sniff (threshold = 20 Hz). 
B, Mean noise correlation at pre-odor (green) and first sniff (red) periods as a function of threshold firing 
rates. Only neurons-odor pairs whose sum of firing rates at the first sniff is higher than a threshold are 
used to compute noise correlations. Threshold = 0 Hz corresponds to the results presented in the main 
figures. 
C, Mean noise correlation slope at pre-odor (green) and first sniff (red) periods as a function of threshold 
firing rates. 
D, E, Spiking variability is quenched by odor stimulation. Fano factor (D) and coefficient of variation (E) 
of spike counts in 120ms bins as a function of task epochs. Neural responses aligned by the first sniff 
after each event were used as in Figures 7A-C. 
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Figure S7, related to Figure 8. Decoding accuracy with induced noise correlation structures 
observed in different task epochs. 
A, Odor decoding accuracy in the presence of simulated noise correlation structures for mixture odor 
trials. Same format as Figure 8A . 
B, The decoding accuracy was computed for shuffled data which imitated the mean and slope of noise 
correlation structures at each task epoch. First, the noise structures were computed at each epoch while 
the signal correlations were taken from the first sniff period. Then, the decoding accuracy was computed 
by looking up Figure 8A as a table using the linear interpolation. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

All procedures involving animals were carried out in accordance with NIH standards and 

approved by the Cold Spring Harbor Laboratory and Harvard University Institutional Animal 

Care and Use Committee (IACUC). All values were represented by mean ± S.E.M unless 

otherwise noted.  Unless otherwise noted, a nonparametric statistical test, the Wilcoxon rank sum 

test and a significance level of P < 0.05 was used and values are uncorrected for multiple 

comparisons. 

 

Behavioral task 

Eight Long Evans rats (250 g at the start of training) were used. Rats were trained and tested on a 

two-alternative choice odor mixture categorization task where water was used as a reward as 

described previously (Uchida and Mainen, 2003). The animals were maintained on a reverse 12 

hr light/dark cycle and tested during their dark period. They were allowed free access to food but 

were restricted to water available during the behavioral session and for 30 minutes after the 

session. The behavioral setup consisted of a box with a panel containing three ports: a central 

port for odor delivery and two lateral ports for water delivery.  

Rats initiated a trial by entering the central odor-sampling port, which triggered the delivery of 

an odor with a (uniform) random delay of 0.2–0.5 s (Figures 1C, S1A). The odor was available 

for up to 1 s. In a reaction time version of the task (N = 5 rats), rats could exit from the odor port 

at any time, and make a movement to either of the two reward ports. Odor delivery was 

terminated as soon as the rat exited the odor port. Reward was available for correct choices for 

up to 2 s after the rat left the odor sampling port. Water was delivered with a random delay from 

entry into the goal port drawn from a uniform distribution [1.0-1.5] s. Rats were first trained with 

a pair of pure odors and binary odor mixtures in different proportions (68/32, 32/68) where rats 

were rewarded for choosing the side determined by the dominant odorant. After reaching an 

asymptotic performance with the first odor pair, rats were trained with the next odor pairs. In 

addition we used a go signal paradigm (Rinberg et al., 2006b) (N = 3 rats), where rats were 

further trained to stay in the odor sampling port until an auditory “go” signal delivered 700 ms 
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after odor port entry. If the subject left the odor sampling port before the go signal, reward was 

omitted. On average, a behavioral session consisted of 561 valid trials (about 98 minutes). 

Behavioral accuracy was defined as the percent correct choices (over the total number of correct 

and error trials; error trials were defined as trials in which an incorrect response was made, 

excluding trials in which the rats made no choice). The timings when rats entered or left the ports 

were signaled by the interruption of the infrared beam caused by the rats’ snout into ports. We 

used port beam break signals to determine the position of the animal during the task with high 

temporal precision. 

 

Odor stimuli 

Odor delivery was controlled by a custom made olfactometer (Uchida and Mainen, 2003). We 

used relatively low concentration of odorants (dilution factor: 0.05-0.005 achieved by diluting 50 

ml/min odorized air in a total of 1000 ml/min clean air stream with further dilution of up to 1:10 

in mineral oil for some odorants). All stimuli were randomly interleaved during a session. As a 

control, we also included “blank” trials in some sessions in which air stream through a filter 

containing no odorants was activated. Rats were rewarded randomly (P = 0.5) at either side of 

reward ports. After some training, rats made choice movements consistently after hearing a valve 

click sound with slightly longer reaction times (587 ± 21 ms, 2.59 ± 0.12 sniffs) than odor trials 

(372 ± 3 ms, 1.25 ± 0.02 sniffs). 

Three rats (two of them trained with go-signals) were tested on a standardized stimulus set of 

three odor pairs: (1) caproic acid and citralva, (2) ethyl 3-hexenoate and 1-hexanol, and (3) 

dihydroxy linalool oxide vs. cumin aldehyde (Figure 1B). Each of these odors was diluted 1:10 

in mineral oil. For each pair, we used four complementary mixture ratios (100/0, 68/32, 32/68, 

0/100). The data set with this condition consisted of 36 experimental conditions (3 rats x 3 

odorant pairs x 4 mixture ratios). Each of the three rats was tested in four to nine sessions (one 

session per day), yielding a total of 10,668 trials during recording. This data set contained 179 

neurons and was used for the classification success analysis. An additional five rats were tested 

using different combinations of odors (three to four mixture pairs per session) to examine the 

basic response properties can be generalized to more odors. The odors used in these experiments 
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are 5-methyl-3-hexen-2-one, meta-, para-cresol, pentyl acetate, benzaldehyde, anisole, (S)-(+)-

carvone, acetophenone, alpha-farnesene and the above six odorants. This data set contained 281 

neurons and was used for other analyses that did not require a fixed set of odors in combination 

with neurons with a fixed odor panel (Figures 2C, 3B). The total data set contained 460 neurons 

from 48 sessions (8 rats).  

 

Analysis of respiration pattern 

To monitor sniffing, during drive implantation, a temperature sensor (0.005” Teflon-coated 

thermocouple, Omega) was implanted in one nostril (Uchida and Mainen, 2003). Respiration 

patterns were monitored as a temperature change in the nasal cavity as described previously 

(Kepecs et al., 2007; Uchida and Mainen, 2003). Signals from nasal thermocouple were 

amplified, filtered between 0.1 and 475 Hz and digitized at 2,000 Hz. For analysis, voltage 

signals were further low-pass filtered (< 50 Hz). Onset of inhalations and exhalations were 

identified as local maxima and minima of the signals semi-automatically using custom software. 

We excluded the trials with partial inhalations where odorants were delivered in the middle of 

the inhalation cycle. A criterion “pre-odor exhalation onset < odor onset + 50ms < first 

inhalation onset” was used to identify full sniff trials. Odor latency of 50 ms was used based on 

measurements of odor delivery timing using photoiodization detector (PID). The results 

presented in this paper are not sensitive to this value but the chance-level hit rate in the 

classification analysis before odor onset supports this estimate (Figures 5B).  

 

Neural recordings 

After each animal reached an asymptotic performance in behavioral training (3-4 weeks), each 

rat was implanted with a custom-made multielectrode drive (Cury and Uchida, 2010; Feierstein 

et al., 2006) in the left hemisphere in the aPC (3.5 mm anterior to bregma, 2.5 mm lateral to 

midline) under anesthesia (ketamine/medetomidine, 60/0.5 mg/kg, i.p.). A stimulation electrode 

(a pair of tungsten elec

recoding site (1.5 mm in depth). Rats were allowed to recover for 5 to 7 days before resuming 
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water restriction and starting the recordings. Extracellular recordings were obtained using six 

independently adjustable tetrodes (impedance: 300- . Before starting recordings, animals 

were retrained to reach similar accuracy levels as those achieved before surgery (>90% correct 

for pure odors). During this period, electrodes were advanced ventrally to the aPC over 4-7 days. 

Recordings were obtained for 1–2 weeks with electrode depths adjusted on each recording day so 

as to sample an independent population of cells across sessions. Neural and behavioural data 

were synchronized by acquiring time-stamps from the behavioural system along with the 

electrophysiological signals. Data acquisition was performed using the Cheetah system 

(Neuralynx, Tucson AZ). Electrode placements were estimated by depth and local field 

potentials evoked by OB electrical stimulation  (Haberly, 1973). 

Recording location was further confirmed by post-hoc histological examination.  

 

Spike sorting and neuron types 

Spike waveforms were collected by filtering between 600 and 6,000 Hz and saving 1 ms 

waveforms triggered by a simple threshold. Single units were isolated offline by manually 

clustering spike features (peak amplitude, energy and principle components) derived from the 

sampled waveforms using MClust software (written by A.D. Redish). Although we attempted to 

sample independent populations of units each session, putatively identical units (based on the 

similarity of the waveforms) were sometimes encountered. Duplicate units were excluded from 

the population analysis, but the results were not affected by the inclusion of all units. As in other 

cortical areas, neurons could be classified into two categories: wide-spiking (width > 0.2 ms) and 

narrow-spiking neurons (width < 0.2 ms). The width was determined as the time between a peak 

and a trough of the mean spike waveform. About 6 % (29) of recorded neurons fell into the 

category of narrow-spiking neurons. Overall, aPC neurons had spontaneous firing rates of 6.15 ± 

9.01 Hz (mean ± S.D.). Spontaneous firing rates of wide-spiking neurons were significantly 

lower than those of narrow-spiking neurons (4.95 ± 6.32 Hz; 24.8 ± 20.1 Hz; mean ± S.D., 

respectively). Both categories of cells were included in the analyses but exclusion of narrow 

spike neurons did not affect the main conclusions. 
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Single neuron analysis 

In order to obtain instantaneous firing rates (e.g. for Peri-event time histograms, PETHs), spike 

events were convolved with a Gaussian filter (S.D.: 7.5 ms) (Figures 2A-B, 4A, 5E, S2). To 

obtain peak timing of odor responses (Figure 2D), the PETHs of 243 neuron-odor pairs that 

showed peak responses > 15 Hz and > 5 S.D. above baseline firing (blank trials) were analyzed. 

To quantify transience of odor responses, we also obtained the temporal half width from the 

same neuron-odor pair (Figure 2E). The temporal half width was defined as the duration of the 

time window at which the firing rate was above the half of maximum firing rate from the 

baseline firing rates. 

Because previous studies in the olfactory system suggested that neural responses can be 

modulated by behavioral context (Cury and Uchida, 2010; Kay and Laurent, 1999; Rinberg et al., 

2006a), comparisons were made against “blank” trials (see above). For example, to obtain the 

number of odor-responsive neurons, comparisons were made using spike counts in a sniff cycle 

in odor trials against that in a corresponding sniff cycle in blank trials (Figures 3A, C, D, S3). 

We also used pre-odor sniffs (a full sniff cycle immediately before odor onset) as a reference in 

some cases. These two methods produced essentially similar results. The time window for a sniff 

cycle was defined as 40–160 ms from inhalation onset (a 120 ms window with 40 ms delay) 

unless noted otherwise. A 40 ms delay was used because obvious neural responses typically did 

not occur before 40 ms from inhalation onset although the results did not depend critically on the 

length of the delay. A 120 ms window was used because the duration of most sniffs are longer 

than 120 ms (< 8.3 Hz) (Kepecs et al., 2007). For example, odor tunings at the first sniffs were 

computed based on the numbers of spikes between 40 ms and 160 ms after the inhalation onsets 

(Figures 3, S3). The same window for corresponding sniff periods was used for the classification 

analysis (Figures 5A, D, G, 8, S4), signal and noise correlations (Figures 6, 7, S5, S6A-C), 

Fano factors (Figures S6D, E) and sparseness (see Supplementary Experimental Procedures). 

 

Classification success (decoding) analysis 

To examine information contents in ensemble activity, we applied a decoding approach (Cury 

and Uchida, 2010; Hung et al., 2005; Quian Quiroga and Panzeri, 2009). We quantified how 
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accurately an ideal observer can determine the odor stimulus based on the neural activity on a 

trial-by-trial basis using a linear classification method. A classification success analysis was used 

because it is applicable to the size of our data (< 9-17 trials/stimulus). It should be noted that in a 

classification analysis with finite data set, only part of the information may be retrieved from the 

data and, therefore, classifiers can only give the lower bound of the information (Duda et al., 

2001; Hastie et al., 1995; Narayanan et al., 2005; Quian Quiroga and Panzeri, 2009). However, 

we could still (1) ask if aPC has at least enough information to explain behavioral performance 

and (2) explore possible information carrier by comparing information conveyed by different 

sniff cycles (first, second or last sniff) or different temporal features (spike counts, peak timings 

or latencies). For a classifier, we mainly used a support vector machine (SVM) with a linear 

kernel(Hung et al., 2005) and all the plots reported in this paper are based on this method. 

However, we also tested other classifiers such as a classifier based on a linear discriminant 

analysis, multilayer perceptrons, and SVM with nonlinear kernels. This confirmed that the main 

conclusions were not affected by the choice of classifiers. 

We used a toolbox in MATLAB (Osu-SVM package) for analyses using a SVM. A matrix 

containing concatenated firing rates for each trial and each neuron was the input to a classifier 

(the dimension of the matrix is the number of neurons by the number of trials). To avoid over-

fittings, a cross-validation method (the leave-one-out method) was used for calculating the hit 

rate of odor discrimination. To compute a classification success rate for a given condition, we 

repeated random sampling of a subset of neurons from the data set 500 times and obtained the 

average classification success rate (Figure 5A). For the analyses of time course (Figure 5B), a 

classifier was trained and tested at each time point (a 50 ms window moved in 5 ms time steps). 

Classification success analyses were applied to the main data set with the fixed three pairs of 

odors (six pure odors and six binary mixture odors, three rats, 179 neurons). We used six labels 

(odor categories) such that a mixture odor belongs to the odor category based on the dominant 

component. Note that the chance classification performance level is 16.67% (=1/6) with 6 odors.  

In order to test whether fine temporal patterns within a sniff cycle convey odor information, we 

first extracted fine temporal features including (1) latency to the first spike from inhalation onset 

or (2) peak timing of firing in sniff cycle from the spike trains using the following methods.  The 

timing of peak firing for each trial was identified as the timing of the maximum firing rate within 
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a window [40-240 ms] in the PETH calculated as above (using a Gaussian filter of 7.5 ms S.D.). 

The latency of responses was defined as the timing of the first spike within a window [40-240 

ms] for each trial. When there is no spike, a random number was assigned to the peak time and 

latency from a uniform distribution over [40-240 ms] to ensure that the peak time and latency are 

as independent from spike counts as possible. A matrix containing these temporal firing features 

was used as an input to a linear classifier and information contents were estimated from 

classification success rates as described above. The speed with which spike trains convey odor 

information using different coding schemes was compared as follows (Figures 4F). For a given 

coding scheme (rate, latency, peak or their combinations), classification success rates were 

calculated using a gradually increasing window (40-50, 40-60, 40-80, 40-120, 40-280 ms, etc).  

To compare the first, second and last sniffs in a fair manner, the same number of trials was used 

for the three epochs (Figure 5D). The last sniff taken in the odor sampling port can be the 

second sniff or later. The number of trials per odor was restricted by the minimum number per 

session (3~11 trials per odor) because we pooled neurons from different sessions. 

In order to examine correlations between behavior and neural activity (Figure 5G-I), we 

performed a classification analysis. A classifier was first trained using a mixture of correct and 

error trials. Classification success rate was then obtained using test trials that are entirely 

composed of correct or error trials.   

All classification analyses except Figure 5G-I were performed after pooling neurons across 

animals. The basic observations were preserved across neurons although the absolute 

classification performance differed across animals.  

 

Noise correlations 

Noise is defined as the trial-to-trial variability around the mean response under a given stimulus 

condition. Noise correlation is defined as the correlation coefficient between the noise of two 

neurons to multiple presentations of a given odor stimulus. To calculate the correlation 

coefficient, firing rates were transformed into z-scores (mean subtracted and normalized by the 

standard deviation of responses) for a given odor (Cohen and Newsome, 2008; Huang and 
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Lisberger, 2009; Zohary et al., 1994). This guarantees that a noise correlation measures only 

correlations between noises, independently of neurons’ mean responses to odors. We applied this 

analysis to spike counts from a 120 ms window (40-160 ms from inhalation onset).  

For pre-odor epochs, we simply calculated the correlation coefficient between pairs of neurons 

using spike counts without subtracting the mean responses of each stimulus condition.  However, 

we confirmed that subtracting the mean spike count for each stimulus condition produced similar 

results.   

A chi square test of homogeneity showed that the noise correlation computed for a pair of 

neurons were independent of stimulus condition in 89.3% of the experiments (P>0.05; 

correlation coefficients were first transformed to Fisher's z to conform normality assumptions). 

We therefore combined z-scores from different stimulus conditions to calculate a single value of 

correlation coefficient for each pair of neurons in Figures 6-8, S5-7, using the same format as in 

the previous study(Zohary et al., 1994). Note that the influence of confounding variables such as 

stimulus strength was removed by converting spike counts to z-scores using the mean and 

standard deviation for repetitions of each stimulus type. 

Noise in the above analyses was estimated as fluctuation around the mean odor responses but 

such variations in firing may still include systematic fluctuations due to other parameters such as 

changes in sniffing patterns and animals’ states. In this sense, our definition of noise correlations 

can be regarded as an operational one.  

To control for this effect on our estimate of noise correlations, we first used the following 

regression model for each odor,  

 

where r is the firing rate, xfreq is the sniff frequency and xamp is the amplitude of sniffing for a 

given trial. This model allows us to estimate the “mean” response for a given trial taking into 

account sniff parameters in addition to odors. We then computed noise correlations after 

subtracting this estimate (r) from the firing rate in each trial. Using this method, we obtained 

essentially the same results both in terms of the mean and slope of the noise correlations (mean 

ampfreq xbxbbr 210
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noise correlation at first sniff: -0.0003 ± 0.0040, noise correlation slope at pre-odor sniff: 0.1125 

± 0.0225).   

Other variables that we did not directly measure or control may also systematically affect the 

neural activity. This includes (1) lingering odors from the previous trials and (2) imagery of 

particular odors.  The first possibility is unlikely because even if we subtracted the mean firing 

rates conditioned for previous odors, we obtained similar correlations before odor stimulation (as 

in Figures 7B, C). The second possibility is harder to exclude as it is not possible to measure 

rat’s imagery. Thus we cannot exclude the possibility that structured correlations we observed 

are due to rats’ imagery of particular odors on a trial-to-trial basis. Although such correlated 

firing should not be regarded as noise correlations, this type of activity can have an impact on 

decoding in a very similar way as structured noise correlations as they can systematically bias 

animals’ estimate of a presented odor.   

Although low firing rates may contribute to low noise correlations, we observed no dependence 

of the magnitude of noise correlations and the number of evoked spikes over a range of rates < 5 

to > 100 spikes·s-1 (Figures S5A, B)(de la Rocha et al., 2007; Kohn and Smith, 2005) and the 

absence of relationship between signal and noise correlation remained true even when the 

analysis was restricted to pairs with firing rates > 20 spikes·s-1 (Figures S6A-C). 

 

Signal correlations 

Signal correlation is defined as the correlation coefficient between the mean firing rates of odor 

response profiles of two neurons. Signal correlation is calculated only for the odor response 

period (first sniff after odor onset). We estimated signal correlations using 6 pure and 6 mixture 

stimuli (12 conditions).  Given the large dimensionality of potential odor space (Soucy et al., 

2009; Wilson and Mainen, 2006), the values of signal correlations may be underestimated. Thus, 

the positive relation between noise correlations and signal correlations (Figures 6D, 7C, D) 

could be larger. However, the odors used in the present study drive responses over a wide area of 

the olfactory bulb (Soucy et al., 2009; Uchida et al., 2000) and we speculate that these odors can 

indicate connectivity to an extent. Our ability to detect the positive relationship between signal 

and noise correlations during pre-odor period supports the validity of our method.  
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Effect of noise correlation structures on population coding efficiency 

Most of the previous empirical studies that examined the effect of noise correlations on 

population coding have mainly focused on the mean correlation (Averbeck and Lee, 2003; Bair 

et al., 2001; Cohen and Maunsell, 2009; Cohen and Newsome, 2008; Constantinidis and 

Goldman-Rakic, 2002; Gawne et al., 1996; Gawne and Richmond, 1993; Gu et al., 2011; 

Gutnisky and Dragoi, 2008; Huang and Lisberger, 2009; Lee et al., 1998; Mitchell et al., 2009; 

Reich et al., 2001; Zohary et al., 1994). However, theoretical studies indicate that it is not the 

mean correlation but rather the exact structure of noise correlations that is critical in determining 

the impact of these correlations on the efficiency of population coding (Abbott and Dayan, 1999; 

Josic et al., 2009; Sompolinsky et al., 2001; Wilke and Eurich, 2002). First, noise correlations are 

particularly detrimental to population coding when they are higher in neuron pairs with similar 

stimulus tuning (“structured” or “limited-range” noise correlations)(Sompolinsky et al., 2001; 

Wilke and Eurich, 2002). Second, when the noise correlations are uniform across the population, 

they can be beneficial for population coding (Abbott and Dayan, 1999; Sompolinsky et al., 2001). 

Because these theoretical studies have made a variety of assumptions on the spiking statistics 

(e.g. Gaussian noise), it is not completely clear how these theories can be mapped onto empirical 

data. In order to understand how these theoretical predictions can be mapped onto our data, we 

performed a simulation-based analysis. Specifically, we introduced arbitrary noise correlation 

structures on the empirical data and tested how they affect the accuracy of decoding using a 

linear decoder. To do so, odor response data obtained during the first sniff period was trial-

shuffled to generate an arbitrary structure of noise correlations (Figures 8, S7). First, a target 

noise correlation function (NCtarget) was defined by a linear regression line as a function of signal 

correlations (SCobserved): 

, 

where a and b denote a slope and an intercept, respectively. We randomly chose two trials for a 

given odor and neuron, and swapped the spike counts from the two trials. If this swap decreased 

the mean square error between the data and the target regression line, it was accepted. We 

baSCNC observedett arg
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repeated the swap 100 times per neuron-odor pair. After 100 shuffling per neuron-odor pair, 

simulated data reached an asymptote: most swaps are not accepted any more. Note that this swap 

procedure changes the noise correlations but not the signal correlation or mean odor response 

profile of any neuron.  

Using this trial-shuffled ensemble activity data, we estimated decoding accuracy using the SVM 

as described above. Note that this method creates only pair-wise correlations and will not 

generate higher order correlations. The color map in Figure 8A was made by smoothing the 

decoding accuracy obtained for a given slope and mean of noise correlations achieved after trial-

shuffling.   
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SUPPLEMENTAL ANALYSIS  

 
Sparseness 

Sparseness of neural responses was quantified using methods previously used to characterize 

visual and olfactory responses(Perez-Orive et al., 2002; Rolls and Tovee, 1995; Willmore and 

Tolhurst, 2001). “Population sparseness” (SP, or response sparseness) is defined for a given odor 

using the following formula, 
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where N is the number of neurons and rj is the response. For a response (rj), we calculated the 

absolute values of standardized firing rates (z-scores), where the mean firing rate for a given 

odor was subtracted by the baseline mean firing rate (in “blank trials”), and normalized by the 

standard deviation.  “Lifetime sparseness” (SL) is calculated for each neuron using the above 

formula except j corresponds to each odor and N the total number of odors tested. Accordingly, 

SP quantifies sparseness of odor-evoked activity (changes from the baseline) across a population 

for a given odor (0: uniform, 1: sparse). SL quantifies sparseness of odor responses (specificity) 

for a given neuron (0: uniform, 1: sparse). Both indices obtained in our data set (SL: 0.41, SP: 

0.61) indicated relatively higher density of odor responses compared to mushroom body in 

locusts (SL: 0.63, SP: 0.86)(Perez-Orive et al., 2002) and aPC in anesthetized rats (SL: 0.88, SP: 

0.93)(Poo and Isaacson, 2009)  and were comparable to the antennal lobe in locust (SL: 0.40, SP: 

0.54)(Perez-Orive et al., 2002).  

 

ROC analysis 

Odor response magnitudes were characterized in terms of how discriminable odor responses are 

from firing in blank conditions using the ROC analysis(Dayan and Abbott, 2001; Green and 
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Swets, 1966). The area under the ROC curve (auROC) characterizes the discriminability of odor 

trials from blank trials using the activity of a single neuron (Figures 3A, C, S3B). We used the 

spike counts within a 40 - 160 ms window after first sniff onset following odor valve opening as 

a neural response. The value of 0.5 indicates no response (chance discrimination). Values larger 

than 0.5 represent excitatory responses (increase in firing), and those smaller than 0.5 inhibitory 

responses (decrease in firing).  One and zero represent perfect discriminability. 

 

Correlations between single neuron activity and behavioral choice 

We examined correlation between single neuron activity and behavioral choice using choice 

probabilities of individual neurons (Figures 5F)(Britten et al., 1996). Choice probabilities were 

computed for each neuron-odor pair. Only mixture trials were used to obtain greater numbers of 

error trials. Only neuron- odor pairs that met the following two criteria were used: (1) one of the 

odors activated strongly compared to another odor (responses of a given pair of odors differed by 

auROC>0.7 or auROC<0.3) and (2) the numbers of correct and error trials were both greater 

than five. aROC > 0.5 indicates that the animal made choices to the direction associated with the 

neuron’s “preferred odor” more often when the neural response was greater (positive correlation 

between activity and choice).  

 

Fano factors  

To characterize the variability of a spike count to multiple presentations of a given odor stimulus 

in a manner which is relatively robust against the firing rate change, we used Fano factor 

(Churchland et al., 2010; Koch, 1999) as a metric. The Fano factor was defined as the variance 

over the mean of responses to the given odor stimulus and was computed for each neuron-odor 

pair (Figures S6D). 
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