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Multiple studies have shown that, during natural motor control, 
neurons in motor areas experience a change in their firing proper-
ties after visuomotor adaptation1–3 or adaptation to a new dynamical 
environment4–8. Although the observed changes in neural activity 
are closely linked to improvements in performance, it remains dif-
ficult to place such modifications in the context of the large cortical 
network for motor control. For instance, the specific neural correlates 
of learning and memory formation may depend on a neuron’s causal 
role in movement control.

BMIs9–23 offer the possibility of understanding the cortical network 
dynamics associated with learning to move a novel actuator in awake-
behaving primates. During ‘brain control’, actuator movements are 
causally linked to an ensemble of neurons (direct neurons), typically 
from the primary motor cortex (M1). Several studies have shown that 
such direct neurons experience a change in their tuning properties 
during the process of learning neuroprosthetic control12,13,21,23.

In contrast, the vast majority of neurons embedded in the larger 
M1 cortical network do not have a direct projection to the BMI. 
Although little is known about the function of such ‘indirect’ neurons 
during ensemble control, they are hypothesized to have a supportive 
role during the process of learning and recalling proficient brain 
control24. To characterize the large-scale cortical dynamics associ-
ated with learning neuroprosthetic control, we recorded ensembles 
of M1 neurons while only a subset were assigned to have a causal 
role during control as direct neurons. We characterized the differ-
ential plasticity of neural properties depending on the specific link 
to movement control.

RESULTS
We trained two macaque monkeys to perform center-out reaching 
movements using a robotic exoskeleton that constrained movements 
to the horizontal plane (that is, manual control). Following implanta-
tion of microelectrodes, a small ensemble of neurons, typically from 
the contralateral M1, was randomly selected to be directly linked to 
BMI control. The remaining neurons were recorded, but were not 
linked to the BMI (that is, indirect neurons). The spiking activity of 
the direct ensemble was transformed to motor commands with a linear 
decoder optimized to predict upper limb movements11,13,18,23,25. The 
animals learned brain control using stable recordings of the direct 
ensemble across days and a decoder that was held constant after the 
initial training23,26,27. Stability of recordings across days was assessed 
by measuring the stationarity of spike waveforms and the interspike 
interval (ISI) distribution23,28–31. As an additional measure, we fre-
quently monitored the directional modulation of each unit during 
manual control sessions.

The monkeys were trained to perform two tasks in brain control 
during separate experiments. Task 1 was structured to equate initial 
conditions for manual and brain control and to minimize changes in 
posture and workspace (Fig. 1a)32,33. The right upper limb remained 
in the exoskeleton under both conditions (Fig. 1a). During manual 
control, the animal made physical movements to initiate and complete 
trials. During brain control, however, the animal first made physical 
movements to the center target. After a variable hold period, a brain 
control trial started. During brain control of the computer cursor, the 
animal was required to hold its arm stationary with the hand in the 
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Brain-machine interfaces (BMIs) provide a framework for studying cortical dynamics and the neural correlates of learning. 
Neuroprosthetic control has been associated with tuning changes in specific neurons directly projecting to the BMI (hereafter 
referred to as direct neurons). However, little is known about the larger network dynamics. By monitoring ensembles of neurons 
that were either causally linked to BMI control or indirectly involved, we found that proficient neuroprosthetic control is 
associated with large-scale modifications to the cortical network in macaque monkeys. Specifically, there were changes in the 
preferred direction of both direct and indirect neurons. Notably, with learning, there was a relative decrease in the net modulation 
of indirect neural activity in comparison with direct activity. These widespread differential changes in the direct and indirect 
population activity were markedly stable from one day to the next and readily coexisted with the long-standing cortical network for 
upper limb control. Thus, the process of learning BMI control is associated with differential modification of neural populations 
based on their specific relation to movement control.
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center target. Arm kinematics was monitored continuously and the trial 
was aborted if any motion occurred. We also performed electromyo-
gram (EMG) recordings to rule out muscle contractions during brain 
control (Supplementary Fig. 1). We ensured that the trajectories were 
comparable using guide lines (Fig. 1a). If the cursor moved outside of 
the lines, the trial was aborted. In contrast with task 1, the second task 
was similar to past experiments11–13,19,23 in which the animal’s arm was 
taken out of the exoskeleton and restrained during brain control.

The animals typically developed proficient brain control over 
time (usually ≥3 d in each experiment; Supplementary Fig. 2). It 
is important to note that although both of these animals had exten-
sive experience with brain control, they required practice to achieve 
skilled control with a new set of neurons and a given decoder. Task 
performance during ‘late’ sessions (that is, ≥3 d of practice) was 86 ±  
2% in monkey P and 83 ± 2% in monkey R (mean ± s.e.m.), with 
a mean time to target of 2.4 ± 0.3 s and 2.8 ± 0.25 s in monkey P  
(16 late sessions from four experiments) and monkey R (nine late 
sessions from three experiments), respectively.

Modification of preferred directions
We first analyzed changes in the preferred direction of direct neurons 
during task 1 (Fig. 1b). We found that a significant proportion experi-
enced a change in preferred direction during brain control in compar-
ison with manual control (56 ± 8%, mean ± s.e.m. with a significant 
change; three sessions with ten neurons each from one experiment in 
monkey P and three sessions with 15 neurons each from one experi-
ment in monkey P; bootstrap analysis with P < 0.05 and a correction 
for multiple comparisons). When the animals were further trained to 
rapidly switch between brain control and manual control on a single 
trial basis (Supplementary Fig. 3), there were still substantial shifts in 
preferred directions (11 of 20 neurons modified with P < 0.05, two ses-
sions in monkey R). Moreover, consistent with past experiments12–14,  
similar modifications were present during task 2 (61 ± 5%, mean ± 
s.e.m., eight sessions from four experiments, 10–45 neurons per ses-
sion, P < 0.05 bootstrap analysis). Thus, changes in limb posture and 
workspace do not exclusively account for the changes in preferred 
direction after transition to brain control. For subsequent analysis, 
we combined the datasets from the two tasks.

We next analyzed the indirect neurons (Fig. 1c). Notably, we found 
that indirect neurons also experienced a similar change in their 
preferred direction in both animals (monkey P, n = 6 sessions with 
18–25 units per session, 60 ± 6%, mean ± s.e.m.; monkey R, n = 4 
sessions, 63 ± 10%, mean ± s.e.m. with 10–18 units; P < 0.05 boot-
strap analysis). To assess specific differences among the population 
of neurons, we subdivided the indirect neurons (Fig. 2a). Indirect 
neurons recorded on a BMI channel (that is, microwire with a direct 
neuron) were labeled as ‘near’ (Supplementary Fig. 4). The remaining 
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MC2BC Figure 1  Modification of neural firing properties during brain control.  
(a) For each daily session, subjects were required to serially perform  
a delayed center-out task in manual control (MC1), brain control and  
then manual control again (MC2). In the brain control task shown, visual 
guides (that is, lines shown in red) enforced straight trajectories. Trials 
were started by the animal physically moving to the center target. After  
a hold period, brain control (absence of any movements) was initiated.  
(b) Changes in the preferred direction of a direct neuron (P < 0.05).  
Solid lines are the cosine fit (R2 is the percent of variance accounted for 
by the fit). Circles and bars (s.e.m.) indicate the directional modulation  
of the firing rate. Right, waveform, crosscorrelograms (0.1% of spikes  
in a window < 1.5 ms) and the mean trajectories during manual control 
and brain control. Statistics were performed with bootstrap analysis.  
(c) Changes in the preferred direction of indirect neurons (P < 0.05).  
The directional modulation relationships are arranged similar to b.  
Insets, waveforms of the respective indirect neurons.

Figure 2  Differential modulation of  
neuronal populations during brain control.  
(a) Distribution of shifts in preferred  
directions (∆PD) between manual control  
and brain control. Each bar shows the  
number of neurons (counts) with a 
corresponding ∆PD. The labels above 
indicate the mean ∆PD for each population. 
Superimposed in gray is the bootstrap 
distribution. (b) Distribution of changes  
in the BC:MC MDratio for the three neural 
populations. Data are presented as in a.  
(c) Ratio of relative modulation depths.  
To compare multiple experiments and 
experimental conditions, we normalized  
each session to the mean modulation  
depth ratio for direct neurons. Early and  
late represent brain control sessions from days 1 and 2 and day 3 and after training, respectively. MC2:MC1 is the ratio of modulation depths  
of the manual control sessions before and after brain control. Error bars indicate s.e.m. *P < 0.05.
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indirect neurons were labeled as ‘far’ (that is, recorded on a microwire 
~500–700 µm from a BMI channel). We did not find a significant 
difference between the percentage and the extent of changes in the 
preferred direction of these two groups (P > 0.05, bootstrap analysis). 
Together, our results indicate that there were large-scale changes in 
the preferred direction of both direct and indirect neurons after the 
transition to brain control.

Although the analysis described above focused on individual units, 
we also examined changes at the population level. For the direct group, 
although a majority of the individual shifts in preferred direction were 
significant, the sum of the positive and negative shifts resulted in a 
nonsignificant net shift, P > 0.05 (Fig. 2a). There were no significant 
differences between the direct, near and far populations (P > 0.05, 
bootstrap analysis; Fig. 2a). A similar finding was also evident when 
considering all neurons in both animals (Supplementary Fig. 5). 
Thus, it appears that there is a relative remapping of the preferred 
directions without any substantial systematic rotational shifts for each 
neural population.

Differential modification of modulation depths
We next examined changes in modulation depth. For each neuron, 
we calculated the ratio of modulation depths between brain control 
and the first manual control session (BC:MC1 MDratio). We initially 
focused on sessions with proficient task performance (that is, late 
sessions). During these brain control sessions, indirect neurons 
were less modulated than they were during manual control (Figs. 1c 
and 2b,c). Consistent with previous findings22,23,34, there was some 
heterogeneity in the direct population responses. In contrast, both of 
the indirect populations experienced a consistent net relative reduc-
tion in the modulation depth ratio (Fig. 2b).

We compared population means across multiple experiments. The 
mean BC:MC1 modulation depth ratios were 1.2, 0.6 and 0.5 for the 
direct, near and far populations, respectively (Fig. 2b). The median 
values were 1.2, 0.5 and 0.5, respectively. Only the near and far groups 
showed a significant decrease (P < 0.05). In addition, when we varied 
the time window for measurement of directional tuning, we reached 
the same conclusion (Supplementary Figs. 6 and 7).

Across six experiments in both animals, we observed a consistent 
difference between the relative mean modulation depths of the direct 

and indirect neuronal populations (BC:MC1 late, ten sessions from 
six experiments in monkey P and monkey R; Fig. 2c). To our surprise, 
the units with close proximity to direct neurons behaved similarly to 
more distant neurons. These differences emerged on stabilization of 
task performance (BC:MC1 early versus BC:MC1 late, P < 0.05 for near 
and far populations, nine sessions taken from six experiments in both 
monkey P and monkey R; Fig. 2c). Together, our results indicate that 
differential modulation of the neuronal populations was specifically 
present during proficient neuroprosthetic control and not during the 
initial learning period.

In addition, there were changes in the mean firing rate of indi-
vidual neurons when comparing manual control with brain control 
(Fig. 1 and Supplementary Fig. 4). These changes appeared to be 
independent of the changes in modulation depth (Supplementary 
Fig. 4). Although some neurons experienced a combined decrease 
in the mean firing rate and the modulation depth (Fig. 1c), other 
neurons experienced a change in the modulation depth while the 
mean firing rate remained unchanged (Supplementary Fig. 4). At 
the population level, however, there were no significant systematic 
differences in the mean firing rate between manual control and brain 
control for either the direct or the indirect populations (n = 6 experi-
ments, P > 0.05, bootstrap analysis).

State-dependent modification of neural properties
As described above, the subjects performed manual control both 
before and after brain control. Thus, comparison of modulation depth 
during MC1 and the second manual control session (MC2) could 
reveal any lasting effects of the modifications during brain control. For 
example, studies of motor learning have documented the neural corre
lates of a memory trace after motor learning4. Notably, there was no 
significant difference between the direct, near and far groups for this 
comparison (P > 0.05, bootstrap analysis, MC1:MC2 MDratio; Fig. 2c). 
This indicates that the population modulation depth during manual 

Figure 3  Stability of neural properties. (a) Average directional modulation 
relationship during MC1 (black) and MC2 (gray) for three neurons.  
The neuron in the lower panel experienced a significant change  
(bootstrap analysis, P < 0.05). Error bars show s.e.m. (b) Actual  
(solid bars) and bootstrap (orange, mean ± s.d.) distributions of  
changes in preferred direction during MC1 and MC2. All three neural 
populations were combined, as they behaved similarly. (c) Distributions  
of modulation depth changes. Data are presented as in b.
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control, both before and after the brain control, was very similar. 
Moreover, the MC2:MC1 MDratio was significantly different from the 
BC:MC1 late relationship for both the near and far neurons (P < 0.05,  
bootstrap analysis, eight sessions taken from six experiments). This 
further implies that the population modulation depth reverts back to 
its original properties during the manual control task.

We subsequently assessed for differences at the level of individual 
units. The vast majority of units did not experience a significant 
change (P > 0.05) in preferred direction between MC1 and MC2 
(Fig. 3a). All three neural populations were combined, as no signifi-
cant differences were evident for each separate comparison. In gen-
eral, we found that the vast majority of neurons reverted back to their 
task-related firing patterns during MC2 in comparison with MC1  
(89 ± 5% and 83 ± 4.5%, mean ± s.d., without significant changes,  
P > 0.05, in preferred direction and modulation depth, respectively, 
n = 6 experiments). We also did not find evidence of significant 
differences for manual control sessions associated with ‘early brain 
control’ (87 ± 8% and 80 ± 3%, mean ± s.d., P > 0.05, without changes 
in preferred direction and modulation depth, n = 6 experiments). 
Moreover, the presence of a unimodal distribution of changes  
(Fig. 3b,c) suggests a small degree of instability of the neuron-behavior  
relationship during the two sessions7,28,35,36. Alternatively, these 
changes could reflect subtle changes in task performance.

What are the neural dynamics of switching (that is, MC1 → brain 
control → MC2)? We measured the directional modulation relation-
ship across sessions. For each transition, relatively rapid changes in 
preferred direction and modulation depth were evident for direct 
units (Fig. 4a,b). Similar dynamics were evident for indirect neurons, 
albeit with a reduction of modulation (Fig. 4c,d). Moreover, the prop-
erties of both direct and indirect neurons remained relatively stable 
during each state.

Stability of indirect neural properties across days
To further test the link between indirect units and brain control, 
we examined their properties across consecutive days of proficient 
brain control. For instance, if the properties of the indirect popula-
tion remain constant across days of proficient brain control, then 
this would suggest that they have an active role. We selected a popu-
lation of stable indirect neurons, all of which had stable waveform 
shapes, ISI distribution and preferred direction during manual control 
(Fig. 5a). The activities of these neurons were compared across two 
consecutive days of brain control (task performance: day 3, 97%; day 4,  
98%). There was no significant difference in either the preferred 
direction or modulation depth for these examples (P > 0.05, bootstrap 
analysis). There were also neurons that were robustly modulated dur-
ing manual control, but were consistently not modulated during each 
daily brain control session (Fig. 5b). In general, individual indirect 

neurons maintained a relatively fixed neuron-behavior relationship for 
consecutive days of brain control (comparison of n = 3 experiments; 
percentage of neurons with stable parameters: preferred direction, 
87 ± 4%; modulation depth, 81 ± 2%; n = 16–20 indirect neurons). 
Notably, this was not significantly different from the neuron- 
behavior relationship for manual control described above (P > 0.05, 
bootstrap analysis).

We also compared the distribution of changes across days for 
both direct and indirect neurons at the population level (Fig. 5c). 
Notably, the indirect neuron distribution was also not significantly 
different from that for direct neurons (indirect, −19 ± 12°; direct, 
−15 ± 9°; mean ± s.d., P > 0.05). Across multiple experiments, we 
also found that the population dynamics were very similar across 
consecutive days (indirect, 0.6 ± 11°; direct, −4 ± 10°; mean ± s.d., 
n = 3 experiments). This was also evident for the modulation depth 
ratio distributions (indirect, 1.0 ± 0.14; direct, 1.07 ± 0.15; mean ± 
s.d., n = 3 experiments). Together, these data indicate that indirect 
neurons maintained a relatively fixed neuron-behavior relationship 
during brain control. The similarity with the direct neurons further 
suggests that the indirect population may have an active role during 
brain control.

DISCUSSION
Our results show that large-scale modifications of the motor cor-
tex network are associated with learning neuroprosthetic control. 
We consistently observed that learning brain control was linked to 
modifications of both direct and indirect neurons. Although a similar 
fraction of both neural populations experienced a change in preferred 
direction, there were clear differences in their relative modulation. 
Thus, the process of learning neuroprosthetic control differentially 
modifies groups of neurons on the basis of their causal relation to 
movements. Notably, these large-scale changes were markedly stable 
over time and readily coexisted with the cortical activity patterns 
associated with actual upper limb movements.

Large-scale modifications associated with learning
One goal of the field of BMI is to allow skilled control of an external 
artificial actuator while minimizing the learning required12,23,37. A 
related hypothesis is that by tapping the existing cortical network 

Figure 5  Stability of neural properties across consecutive days of brain 
control. (a) Average directional modulation relationship for a direct and 
near unit during manual control and brain control on 2 consecutive  
days. Partial lines above each tuning curve represent the respective 
preferred direction for each daily brain control (PDBC) and manual  
control (PDMC) session. The shaded region is the respective variance  
of the bootstrap distributions of PDBC and PDMC. Waveforms and 
interspike interval distributions from a direct (red) and near (blue) unit  
on consecutive days are also shown. (b) Directional modulation of a far 
unit on 2 consecutive days. PDBC could not be estimated because of 
a lack of modulation. (c) Population distribution of preferred direction 
changes for indirect and direct neurons (PDBC3–PDBC4). For indirect  
units, the actual (gray bars) and bootstrap (black line) distributions are 
shown. The dark red line is the bootstrap distribution for direct units.  
Dotted vertical line represents a ∆PD of 0.
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for manual control, brain control can be achieved in a rapid and 
intuitive manner. In support of this possibility are studies demon-
strating that motor cortex spiking can be dissociated from move-
ments21,38, imagined movements result in patterns of activity in 
the absence of movement18 and an arbitrary activity pattern may 
be achieved through learning21,23. Past research has evaluated 
brain control with biomimetic decoders that capture the relation-
ship between neural activity and a movement parameter11–13,18. 
Multiple studies, however, have reported that learning is required 
to achieve skilled control12,13,18,23,26.

We also observed a requirement for learning when a new set of neu-
rons and a decoder were introduced23,27. Moreover, we noted shifts 
in the preferred direction of both direct and indirect neurons. Our 
results also show for the first time, to the best of our knowledge, that 
the surrounding indirect neurons are differentially modified. This 
was evident only after stabilization of performance and not during 
the initial learning process. Stability of recordings and the decoder 
are likely to be important for skill acquisition and the observed neural 
modifications23,27. It is important to note, however, that the major-
ity of BMI studies have not used such conditions, instead relying on 
decoders that are retrained daily12,13,27,39. It remains unclear how the 
indirect neurons are modified under those conditions.

What is the role of indirect neurons? The stability of indirect neural 
properties suggests that indirect neurons have an active supportive 
role in neuroprosthetic control. Our analysis of individual neurons 
indicates that such stability is present over long daily sessions as well 
for sessions on subsequent days. Notably, the stability of both direct 
and indirect neural properties is quite similar. This implies that, 
although the decoders cannot ‘translate’ indirect neural activity, this 
activity may shape the direct activity. However, it also remains pos-
sible that indirect activity may have a negative role. In this viewpoint, 
our observed reduction in modulation depth may allow more efficient 
brain control by avoiding interference with the direct neurons22,24. 
This may be related to the ‘reweighting’ phenomenon after perturba-
tions to the decoder22.

Changes in directional tuning with learning
Both indirect and direct populations experienced similar changes in 
preferred direction. Moreover, at the population level, there was no 
significant rotation. Notably, these widespread changes were closely 
linked to the process of learning. For example, both groups experi-
enced an overall stabilization of tuning properties when task per-
formance plateaued. This was also evident for neurons across days 
of brain control. This association suggests a link between learning 
neuroprosthetic control and the observed changes in preferred direc-
tion. After the initial switch to brain control during early sessions, 
performance was typically poor. This implies that the ensemble tuning 
properties (that is, those present during manual control) are not suf-
ficient. It is reasonable to assume that error-correction mechanisms 
are recruited over this period. It is thus possible that the observed 
shifts in preferred direction are the result of cortical mechanisms to 
minimize task-related errors. This notion is supported by our recent 
finding of a strong correlation between the extent of instability of 
direct neural tuning properties and task performance during long-
term brain control23.

We also designed a task to closely approximate the initial condi-
tions for manual control and brain control (that is, task 1). This task 
minimized the possibility that changes in limb position and pos-
ture32,33 could by themselves result in widespread changes in pre-
ferred direction. With this task, we still noted large-scale changes. 
Notably, even when initial conditions were such that the animal 

could not predict an upcoming trial (that is, single trial switching 
between manual and brain control; Supplementary Fig. 3), changes 
in preferred direction were still evident. These results suggest that 
differences in initial conditions cannot completely account for the 
observed change in neural properties. It remains possible that differ-
ences emerging after the onset of movements (for example, absence 
of limb dynamics and propioception) are triggers for the changes in 
neural properties. However, past studies have also found that brain 
control in the presence of limb movements (that is, where proprio-
ception and limb dynamics are likely to be present in some form) 
have also resulted in modifications13,40. Moreover, changes in sensory 
responses should affect both the indirect and direct neurons equally 
(that is, a global change). Our observed differential modulation is not 
consistent with this possibility.

Differential modulation of direct and indirect populations
The distinction of direct versus indirect is an externally imposed 
causal link to cursor movements via the decoder. Although these 
populations were similarly modulated before learning brain control, 
stable skill acquisition was associated with differential modulation. 
Thus, learning proficient control through error-correction processes 
and visual feedback appears to be capable of differentially modifying 
populations of units with a causal link to movements.

Our finding is closely related to previous results, albeit at the level 
of neural ensembles, on modifications of single neurons and pairs 
of neurons through operant conditioning21,24,41. Studies of operant 
conditioning of single neurons found that nonconditioned adjacent 
neurons were largely correlated with the conditioned neurons24,41. 
Recent theoretical work suggests that spike timing–based plasticity 
could underlie changes in neural activity through operant condition-
ing42. Apparent differences in comparison to our findings may be the 
result of two factors. First, differential modulation was only evident 
after several days of practice. Our analysis of early sessions could be 
consistent with the correlated changes seen with daily conditioning 
of individual neurons. Second, learning neuroprosthetic control with 
larger ensembles may not be compatible with strategies that trigger 
correlated increases in neural activity.

Moreover, recent work on changes in neural activity in response to 
decoder perturbations suggest that error-correcting mechanisms can 
partially establish a link between neurons and their specific contri-
butions to errors during brain control22. This finding may be related 
to our observation of differential modulation. Neural mechanisms 
of error correction are almost certainly recruited by this process. It 
seems reasonable to hypothesize that a common mechanism underlies 
both the initial establishment of proficient control as well as adjust-
ments after a perturbation. Especially given the casual link between 
direct activity and cursor movements, direct neurons are more likely 
to contribute to errors than indirect neurons.

Reversibility of the modifications
The observed large-scale modifications were reversible in a state-
dependent manner. Although several studies have documented 
changes in neural properties during brain control12–14,21–23, the 
time course and reversibility of such changes remained unclear. 
We found that modifications to both direct and indirect neurons 
were rapidly reversible. This indicates that proficient neuropros-
thetic control is associated with the formation of a cortical state 
that readily coexists with the long-standing network for natural 
motor control. When switching between control states, the cortical 
network appears to rapidly switch, without interference, based on 
task requirements.
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Such rapid reversibility may contrast with the network changes asso-
ciated with adaptation to novel force fields4,5. In a previous study, after 
adaptation to a new dynamical environment, motor cortex appeared 
to retain a ‘memory trace’ evident at the level of single neurons5. 
Although this may suggest a difference between motor adaptation 
versus neuroprosthetic learning, there are several factors that could 
account for the differences. Two such factors are the amount of time 
spent learning the task and the electrophysiological recording tech-
nique (for example, acute single neuron recordings versus chronic 
recordings could target different neuronal populations). In general, 
the exact mechanisms that allow for apparently rapid changes to 
cortical properties when switching control states remain unclear. 
They may be related to existing cortical mechanisms for switching 
among states during natural motor control43. It also points to the 
general ability to maintain multiple neuron-behavior relationships 
without interference23,28,36.

In summary, our results indicate that learning neuroprosthetic  
control is associated with differential modulation of neuronal popu
lations based on its causal link to movement control. Moreover,  
proficient control is linked to the formation of a stable large-scale set 
of neural activations.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Surgery. Two adult male rhesus monkeys (Macaca mulatta) were chronically 
implanted bilaterally in primary motor and premotor cortex with 3–4 arrays of 
64 teflon-coated tungsten microelectrodes (8 × 8 array separated by ~500 µm, 
Innovative Neurophysiology; Supplementary Fig. 4). The specific location of 
implants in these two monkeys (monkeys P and R) was described previously23. 
All procedures were conducted in compliance with the US National Institutes 
of Health Guide for the Care and Use of Laboratory Animals and were approved 
by the University of California at Berkeley Institutional Animal Care and  
Use Committee.

Extracellular unit recordings. Unit activity was recorded using the MAP sys-
tem (Plexon). Activity was sorted on-line before recording sessions (Sort-client, 
Plexon). Our experiments exclusively used recordings from contralateral M1. 
Near, far and direct units were from the contralateral M1. Two previously pub-
lished datasets20 were also included in the analysis. One dataset was from the 
ipsilateral M1 and the other was from the contralateral M1.

Consistent with previous reports12,23,28–30, several months post-surgery, we 
found a subset of units whose waveform shape, amplitude and relationship to 
other units on a channel varied little from day to day (that is, sorting template 
in Sort-client required no modifications; Fig. 5a,b). The stationarity of such 
properties was the first criterion for a putative stable unit. Offline, we con-
firmed stationarity using principal component analysis (Wavetracker, Plexon). 
We also examined the ISI distribution. A Kolmogorov-Smirnov test was used 
to compare ISI distributions. After sorting, units with a clear refractory period 
(1.5–2 ms) were designated as putative single units. We also estimated the pre-
ferred direction of stable units as an additional measure of recording stability 
(see below).

Electromyography. Surface gold disc electrodes (Grass Technologies) were 
mounted on medical adhesive tape and placed on the skin overlying muscle 
groups. Muscle groups tested included pectoralis major, biceps, deltoid, triceps, 
trapezius, and forearm extensors and flexor muscles. EMG signals were ampli-
fied 10,000-fold (Grass Technologies). Offline, signals were high-pass filtered, 
rectified and smoothed by convolution with a 25-ms triangular kernel (Matlab, 
R2009b). Directional activation was estimated using the activity in a 300-ms 
window after movement onset.

Experimental setup and behavioral training. Monkeys were trained to per-
form a center-out delayed reaching task using the Kinarm exoskeleton (BKIN 
Technologies). The behavioral task consisted of hand movements from a center 
target to one of eight targets distributed over a circle 14 cm in diameter (that is, 
manual control). Target radius was 0.75 cm. Trials were initiated by entering the 
center and holding for a variable period (500–1,000 ms). The GO cue (center 
changed color) was provided after the hold period. A liquid reward was provided 
after a successful reach. Visual feedback of hand position was provided by a cursor 
precisely co-located with the center of the hand (radius of 0.5 cm).

Decoding parameters from neural ensembles. We used linear regression to map 
neural activity to kinematic parameters23,26. This was performed using functions 
available in Matlab (R2009b). For a subset of experiments (brain control task 2), 
the neural activity predicted joint position. These values were then converted into 
Cartesian coordinates. The cursor position was updated on the Kinarm projection 
screen at 10 Hz. We also tested direct prediction of hand velocity in Cartesian 
coordinates (brain control task 1; Fig. 1a). Neural activity was streamed over a 
local intranet via the PLEXNET client-server application (Plexon) and converted 
into 100-ms bins of spiking activity.

The number of neurons incorporated ranged from 10 to 45. This variability 
was a function of several factors. Primarily, we were limited by the availability of 
well-isolated neurons. The yield slowly decreased over time after implantation. 
The second limitation was the stability of an ensemble. Prior to each experiment, 
we monitored the activity in one array over days to identify possible stable units. 
Although such monitoring increased the probability of recording a stable ensem-
ble, it did not guarantee stability. Thus, there were numerous failed experiments 
resulting from an inability to record the ensemble over the desired time period. 
The other factor was the need to monitor both direct and indirect neurons during 
the course of learning brain control.

We ensured that well-isolated units were part of both the direct and indirect 
populations. Supplementary Figure 8 compares the properties of the two groups 
from one experiment (same experiment as shown in Fig. 2a). Using the linear 
decoder described above, we also compared the ability of randomly selected 
neurons from either the direct or indirect population to predict limb move-
ment parameters. After running 100 such comparisons, we found that the mean 
correlation between the actual and predicted limb positions was very similar 
(direct population, R = 0.77 ± 0.06; indirect population, R = 0.74 ± 0.05; mean 
± 2 s.d.).

Online brain control. As noted above, these animals had been previously trained 
to perform brain control task 2 (ref. 23). The task structure for brain control task 1  
was new to them. New brain control experiments were performed over short 
periods of time (typically 3–6 d). There was consistent evidence of improvements 
in performance with practice (also see Supplementary Fig. 2). Animals were 
permitted to use a fixed decoder (that is, held constant after initial training on  
day 1) and stable recordings from a neural ensemble23,27. Each experiment con-
sisted of a new set of stable neurons and a decoder that was fixed after training 
on day 1. Each experiment consisted of multiple daily sessions.

During brain control task 1, the animal kept his right upper limb in the exoskel-
eton. The animals were required to move their hand to the center target to start a 
trial and to keep it in the center target at all times (Fig. 1). A new cursor (under 
brain control) appeared at the start of the trial. The animals were required to 
move the cursor to the target by modulation of motor cortex activity (under velo
city control). Hand position was continuously monitored during brain control. 
The trial was aborted with any change in hand position. To start a new trial, 
the animal had to move out of the center target and reposition his hand. Thus, 
the brain-controlled cursor was reset to the center target for each trial. During 
selected sessions, we concurrently performed video and surface EMG recordings 
from proximal and distal muscle groups (Supplementary Fig. 1). Monkey R 
was trained to perform this task in a single trial randomized fashion (switching 
between manual control and brain control trials; Supplementary Fig. 3).

For brain control task 2, the cursor was continuously under brain control. 
The task-related hand was removed from the exoskeleton and restrained on the 
side during brain control. The cursor was under continuous volitional control. 
Subjects were required to self-initiate each trial by moving the brain controlled 
cursor to the center. A trial was considered incorrect if the cursor failed to reach 
the target by 10 s after a GO cue. To start a trial, the cursor had to be held over 
the center target for 250–300 ms. The chance level of self-initiation was ~0.5 per 
minute. This value was determined through experiments where the task was per-
formed by spontaneous neural activity (that is, the computer monitor was turned 
off while the cursor was controlled by spontaneous activity). In contrast, while 
engaged in the task, each subject self-initiated trials at a rate of 3–10 per min.

Data analysis. The majority of analysis was performed on late sessions (defined 
as sessions ≥ day 3 in an experiment). Early sessions occurred on days 1 and 2.

Preferred direction. Directional tuning was estimated by comparing the mean 
firing rate as a function of target angle during movement execution. In manual 
control, the time to target was relatively constant (~700 ms). In brain control, 
this period was variable and decreased with learning. For the analysis, a 500-ms 
window was used (starting 200 ms before movement). Our results did not depend 
on the specific time window (Supplementary Figs. 6 and 7).

The tuning curve was estimated by fitting the firing rate with a sine and a 
cosine as 

f B B B= ×
















[ , , ] sin
cos

1 2 3

const
q
q

where θ corresponds to reach angle and f corresponds to the firing rate across 
the different angles. Linear regression was used to estimate the B coefficients. 
The preferred direction was calculated using the following: preferred direction =  
tan−1 (B2/B3), resolved to the correct quadrant44. For units with changes in  
preferred direction, we ensured that regression captured ≥50% of the variance. 
Thus, the unit shown in Figure 5b was not included in the analysis of preferred 
direction changes.

(1)(1)
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Modulation depth. Modulation depth was calculated as the peak-to-peak ampli-
tude of the tuning curve. For Figure 2c, we ensured that the tuning fit was appro-
priate for the manual control trial. The modulation depth of the brain control 
was computed regardless of the fit. This ensured that units no longer modulated 
in brain control were included (for example, Fig. 5b). The modulation depth 
ratio was calculated by dividing the modulation depth under two conditions (for 
example, comparison of brain control/manual control). To compare multiple 
experiments and experimental conditions, we normalized each experiment to the 
mean modulation depth ratio for direct neurons. We also tested a nonparametric 
metric (difference between highest and lowest firing rate). We reached the same 
conclusion of a relative decrease for the indirect population.

Changes in directional tuning. A bootstrap resampling procedure was used to 
test significance of modulation depth and preferred direction changes23,28. By 
repeating this 2,000 times, we created a distribution corresponding to the null 
hypothesis (that is, no change in preferred direction). The confidence intervals 
were based on the specified P value using a percentile bootstrap. Comparison of 
modulation depth and firing rates were performed in an analogous manner.

Changes in mean preferred direction and mean modulation depth. A boot-
strap statistic was also used to compare differences between populations (for 
example, Fig. 2b). The experimental values for each population were sampled 
with replacement 2,000 times. By taking the mean of each resample, we created a 
distribution of values. For comparison between conditions, we sampled one value 
from the respective zero mean distributions to create a distribution of absolute 
differences. We did not note any bias and the corresponding distributions were 
symmetric (Fig. 2b).

We also tested an alternative tuning measure23. Specifically, we reexamined 
the tuning analysis based on the actual path of the cursor (as opposed to the 
intended direction). A similar percentage of units experienced a change in pre-
ferred direction (path taken: 69 ± 8% versus intended direction: 67 ± 12% mean ±  
s.d., n = 10 sessions, P > 0.05). Moreover, a related hypothesis is that changes in 
individual preferred directions could also manifest as changes in ensemble firing 
patterns. A preliminary analysis of the reversible changes in firing patterns when 
switching from manual control to brain control are shown in Supplementary 
Fig. 9 (refs. 45,46).

Modifications during a session. Neurons with a significant change were selected. 
To estimate values over the course of MC1/BC/MC2 trials, a moving window of 
trials (two sets of trials to each of eight targets) was used. Each individual param-
eter was then plotted over time (Fig. 4a,c). To calculate the baseline preferred 
direction change, we first determined the mean preferred direction during MC1 
for each neuron. This value was subtracted from all values during MC1/BC/MC2. 
Thus, the baseline was ‘zeroed’ for ease of comparison. As we were interested in 
examining the rapidity and stability of shifts, we took the absolute value of this. 
The traces in Figure 4b,d were the overall average.

44.	Georgopoulos, A.P., Schwartz, A.B. & Kettner, R.E. Neuronal population coding of 
movement direction. Science 233, 1416–1419 (1986).

45.	Briggman, K.L., Abarbanel, H.D. & Kristan, W.B. Jr. Optical imaging of neuronal 
populations during decision-making. Science 307, 896–901 (2005).

46.	Churchland, M.M., Yu, B.M., Sahani, M. & Shenoy, K.V. Techniques for extracting 
single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 17,  
609–618 (2007).
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