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SUMMARY

During motor learning, movements and underlying
neural activity initially exhibit large trial-to-trial
variability that decreases over learning. However, it
is unclear how task-relevant neural populations coor-
dinate to explore and consolidate activity patterns.
Exploration and consolidation could happen for each
neuron independently, across the population jointly,
or both. We disambiguated among these possibilities
by investigating how subjects learneddenovo to con-
trol a brain-machine interface using neurons frommo-
tor cortex. We decomposed population activity into
the sum of private and shared signals, which produce
uncorrelated and correlated neural variance, respec-
tively, and examined how these signals’ evolution
causally shapes behavior. We found that initially large
trial-to-trial movement and private neural variability
reduce over learning. Concomitantly, task-relevant
shared variance increases, consolidating a manifold
containingconsistentneural trajectories thatgenerate
refined control. These results suggest that motor cor-
tex acquires skillful control by leveraging both inde-
pendent and coordinated variance to explore and
consolidate neural patterns.

INTRODUCTION

When we begin learning a novel skill, we have no experience

about how to move to achieve a particular goal. Early in training,

movements exhibit variability from attempt to attempt, allowing

the motor system to explore actions and select them based on

consequences (Sutton and Barto, 1998; Tumer and Brainard,

2007; Wu et al., 2014). Gradually, movement variability de-
creases as themotor system consolidates particular movements

that lead to success (Cohen and Sternad, 2009; Shmuelof et al.,

2012). This suggests that a task-relevant neural population ex-

plores neural activity patterns to generate novel motor com-

mands, and selects and consolidates those that achieve the

desired goal. Indeed, neurophysiological motor learning studies

have found that movement-related neural activity in various spe-

cies follows a similar trend, exhibiting high variability in early

training that reduces as particular ensembles and activity pat-

terns are consolidated in late training (Arduin et al., 2013; Barnes

et al., 2005; Cao et al., 2015; Costa et al., 2004; Kao et al., 2005;

Mandelblat-Cerf et al., 2009; Peters et al., 2014; Santos et al.,

2015; Zacksenhouse et al., 2007). However, it is unclear how

exploration of particular patterns in a task-relevant neural popu-

lation is accomplished, and also how goal-achieving patterns are

refined and consolidated to improve performance.

The motor system is distributed and redundant, with parallel

pathways and many more neurons than muscles, making it diffi-

cult to investigate the causal relationship between observed

neural activity patterns and motor output (Briggman and Kristan,

2008). We therefore took advantage of a paradigm in which we

could identify the output neurons that control behavior as well

as the explicit transformation between output neuron activity

and behavior. We used an operant learning brain-machine inter-

face (BMI) in which stable recordings from ensembles of primary

motor cortex (M1) neurons in macaque monkeys are input to a

fixed mathematical transform (‘‘decoder’’) outputting prosthetic

two-dimensional cursor movements. The BMI provided a

closed-loop feedback system operating within the natural motor

system (Figure 1A). Because we defined the decoder to take

input from observed cells (‘‘direct cells’’), this neuroprosthetic

skill learning paradigm (Ganguly and Carmena, 2009, 2010) is

uniquely advantageous to investigate how a task-relevant neural

population coordinates to acquire skillful control.

Given that the decoder is novel, subjects must initially explore

neural population activity space. This is a non-trivial search

because population activity space is high dimensional, with
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Figure 1. Experimental Paradigm

(A) The operant learning BMI paradigm. Stably recorded units are selected (direct cells) to provide input to a decoder with fixed parameters over training.

(B) Center-out task timeline. See STAR Methods for details.

(C) The task uses a position decoder, which maps a neural spatiotemporal pattern into a low-dimensional control signal that produces the cursor endpoint.
each neuron’s activity represented as one dimension. Over

training, subjects must use the behavioral consequences of

explored activity patterns to select and refine goal-achieving

patterns. This consolidation process is not well understood,

especially as there are many neural activity patterns that can

elicit the same behavioral output in systems mapping many

neurons to fewer outputs, such as a BMI or our natural motor

system. How might this learning happen? We consider three

possibilities.

In ‘‘independent neuron learning,’’ each neuron explores inde-

pendently, as has been proposed in computational models (Hé-

liot et al., 2010; Legenstein et al., 2010), and each neuron tunes

its independent patterns over learning (Figure 3A). Because inde-

pendent neuron learning explores every dimension of population

activity space, this learning can acquire any firing rate configura-

tion and thus control any decoder. However, this learning cannot

explain how subjects rapidly acquire (within 1 day) decoders that

leverage neural covariance (Sadtler et al., 2014).

In contrast, ‘‘constrained-network learning’’ posits that the

neural population possesses network connectivity constraints

and thus preferentially produces covariation patterns within a

fixed, lower-dimensional subspace of the full activity space.

Indeed, both BMI and motor control studies have found that mo-

tor cortical neurons exhibit task-relevant, low-dimensional

covariance during execution of well-learned behavior (Church-

land et al., 2012; Kao et al., 2015; Sadtler et al., 2014). Under con-

strained-network learning, the neural population explores and

changes covariation patterns within the fixed subspace (Sadtler

et al., 2014) (Figure 3B). One limitation of the constrained explo-

ration is that this learning can only acquire decoders reading

out activitywithin the population’s existing covariance subspace.

Finally, we consider ‘‘flexible-network learning,’’ which both

permits the learning of many decoders and can explain the emer-
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gence of new covariance. In this model, the neural population ex-

plores and changes both independent and covariation patterns.

Critically, independent exploration permits subjects to initially

explore a higher dimensional space of activity patterns. Upon

discovering patterns with rewarding consequences, subjects

may shape their network to reliably reproduce rewarding

patterns, constraining patterns to lie within a low-dimensional

subspace. This mechanism thus enables consolidation of covari-

ance in a different subspace from initial covariance (Figure 3C).

To determine which of these three possibilities best explains

how the task-relevant neural population coordinates to acquire

neuroprosthetic skill de novo, we sought to disentangle how in-

dependent and coordinating sources of neural variance changed

and contributed to BMI control over the course of learning. We

used Factor Analysis (FA) (Everitt, 1984) to decompose popula-

tion activity into the sum of private and shared signals, which es-

timate the effects of both private inputs to each cell and

coordinating inputs that drive multiple cells simultaneously

(Churchland et al., 2010; Yu et al., 2009). Using FA, we arbitrated

between our three learning models in addressing how a task-

relevant neural population explores, consolidates, and optimizes

activity to acquire a neuroprosthetic skill de novo.

First, we asked how private and shared sources influence the

exploration of different activity patterns from trial to trial. To

isolate trial-to-trial variability from within-trial variance relevant

for control, we focused on the variability of the population firing

rate at coarse timescale (time window �1 s) for a fixed cursor

state (the center of the workspace) with a fixed movement inten-

tion (the target). Second, we asked how private and shared sour-

ces contribute to within-trial control over the course of learning.

To assess control-relevant neural activity, we focused on spike

counts at the decoder timescale of 100 ms. This decoder-time-

scale neural variance can be interpreted as signal strength for



BMI control. Finally, we asked how the spatial and temporal

structure of late training neural activity supported skillful control.

In particular, we asked whether neural activity preferentially

occupied the control-relevant dimensions of the decoder, and

whether a particular temporal sequence was consolidated that

generated skillful control. We focused on fine-timescale trajec-

tories at 50 ms resolution, faster even than the decoder

timescale.

Exploration and consolidation via independent neuron

learning predict that private trial-to-trial variability decreases

and private decoder-timescale variance is used for control.

Constrained-network learning predicts the opposite; shared

trial-to-trial variability decreases and shared decoder-timescale

variance is used for control. Combining these changes under

flexible-network learning, we would expect that in early learning,

private trial-to-trial variability contributes to activity exploration,

and private decoder-timescale variance produces variable

movements, while we would expect that in late learning, shared

decoder-timescale variance consolidates and contributes to

skillful control. Indeed, our analyses revealed that private and

shared variance changed differentially to sculpt neural spatio-

temporal patterns and improve movements, providing insight

into how motor cortex coordinates to explore, consolidate, and

optimize population activity underlying novel skills.

RESULTS

Neural Control Refinement Increases Movement
Success Rate, Directness, and Consistency
We analyzed data from operant learning BMI experiments

(Ganguly and Carmena, 2009) in which two rhesus macaques

chronically implanted with microelectrode arrays in M1 learned

to perform a two-dimensional, self-paced, continuous control

center-out BMI reaching task (Figures 1A and 1B). Each trial,

subjects drove the cursor under neural control to an instructed

target (randomly selected from eight possible targets) for juice

reward and controlled the cursor back to center to initiate the

next trial.

The decoder was optimized to predict upper limb movement

using input from a fixed subset of recorded neurons (‘‘direct

cells’’) chosen because of their stability over days (see STAR

Methods) (Ganguly and Carmena, 2009). Because both the

direct cells and the decoder parameters were held fixed for the

duration of training (Monkey P, 19 days; Monkey R, 7 days), per-

formance improvement could only be driven by adaptive

changes in population activity (Figure 1A).

The decoder transformed a neural activity sequence into the

cursor’s x-y position (Figure 1C). The direct cells’ activity in the

last 1 s was binned into 10 time lags of 100 ms bins, and linear

combinations of the neuron-lag activity produced the cursor’s

position. Because the number of neurons exceeded the two

cursor dimensions (Monkey P, 15 neurons; Monkey R, 10 neu-

rons), (infinitely) many activity patterns could produce the same

behavior, as is the case in our motor system, which possesses

more neurons than muscles. Changes in neural activity did not

translate into changes in cursor position unless they occurred

within the decoder’s control-relevant neural dimensions, the

‘‘readout space,’’ defined by the decoder weights.
Under these conditions, subjects gained proficient control,

improving both accuracy and success rate for all targets (Figures

2A and 2B). Changes over learning were analyzed over ‘‘training

epochs,’’ where each epoch contains a constant number of tri-

als. This division of trials ensured that analysis results were not

influenced by unequal numbers of trials performed on each

day. Observed trends were consistent with analyses performed

across days (Figures S2 and S3, available online). Note that an-

alyses of behavioral and neural changes were performed for

each target separately. All trends are plotted with error bars

showing the SEM over targets.

We asked how control was refined on a trial-to-trial basis by

analyzing the positions the cursor entered in each trial. We

computed the cursor’s trial-to-trial workspace occupancy for

each individual target, i.e., the probability that the cursor entered

a given position within a trial (Figure 2C). We found that the frac-

tion of workspace entered per trial decreased as the cursor

movements became increasingly direct (Figure 2D), and that

the subjects’ workspace occupancy became consistent over

late training epochs (Figure 2E) (see STAR Methods). These

two results show that the cursor’s trial-to-trial exploration of

the workspace became refined and stable with training, extend-

ing previous reports on the straightening and stabilization of trial-

averaged trajectories (Ganguly and Carmena, 2009). Finally, we

found a decrease in the trial-to-trial variability of the entire set of

positions entered within a trial (Figure 2F) (see STAR Methods).

These results show that neural control was refined and consoli-

dated over long-term BMI training, increasing movement

success rate, directness, and consistency.

Modeling Neural Variance Changes over Learning
with FA
Having quantified control refinement over training, we sought to

model how the direct cells coordinated to explore and change

neural activity patterns underlying control. Under what condi-

tions would independent patterns (described by private vari-

ance; Figure 3A) or covariation patterns (described by shared

variance; Figure 3B) be preferred for generating movement vari-

ability? When a subject has no idea which neural readout dimen-

sions the decoder uses, private variance is beneficial because

this high-dimensional exploration would generate variability in

any readout space (Figure S1A). Low-dimensional shared

variance might be misaligned with the readout space and thus

produce little movement variability (Figure S1B). On the other

hand, when the subject has experience with the readout space,

low-dimensional shared variance aligned with the readout space

is more efficient in generating movements because it concen-

trates more variance in fewer neural dimensions (Figure S1C)

and leads to faster learning (Sadtler et al., 2014). Thus, flexible-

network learning combines these properties, allowing the popu-

lation to expansively explore using private variance and then

consolidate control-specific shared variance. Importantly,

exploring the behavioral consequences of activity outside the

initial shared space could guide the shared space to rotate or

change dimensionality (Figure 3C).

Seeking evidence for these neural activity changes, we used

FA to decompose population firing rate activity into the sum of

(1) a mean rate; (2) private signals, which drive each neuron
Neuron 93, 955–970, February 22, 2017 957



Figure 2. Cursor Control Is Refined

(A andB) Performance improved over training forMonkey P (main) andMonkey R (inset). (A) Percent correct increased (Monkey P, r = 0.93, p = 5.8e�7, early < late

p = 3.3e�10; Monkey R, r = 0.96, p = 4.7e�4, early < late p = 1.5e�9). (B) Success rate in trials per minute increased (Monkey P, r = 0.96, p = 1.6e�8, early < late

p = 1.4e�6; Monkey R, r = 0.91, p = 4e�3, early < late p = 4.0e�6). Targets (indicated by color) showed different time courses of improvement. Mean and SEM

error bars are shown over targets (n = 8 for both subjects).

(C) (Top) Single-trial example trajectories over three epochs, for one example target. (Bottom) Workspace occupancy maps for the example target over three

epochs. Intensity indicates the fraction of trials a position was occupied.

(D) Percent of workspace entered per trial decreased over training (Monkey P, r = �0.94, p = 3.2e�07, early > late p = 4.1e�9; Monkey R, r = �0.87, p = 1e�2,

early > late p = 2.0e�4).

(E) Similarity of workspace occupancy to the final workspace map increased and stabilized with training (Monkey P, r = 0.92, p = 2.3e�6, early < late p = 5.9e�9;

Monkey R, r = 0.88, p = 2e�2, early < late p = 1.2e�2). (Bottom inset) Heatmap shows the similarity between each epoch pair’s occupancymaps. A heatmap was

calculated for each target separately; the target average is shown here. The lower left red box indicates cursor scatter during gross explorationwhile the upper red

box indicates late training stability of refined control.

(F) Trial-to-trial variability of workspace occupancy decreased (Monkey P, r =�0.93, p = 4.6e�7, early > late p = 1.7e�8; Monkey R, r =�0.54, p = 2e�1, early >

late p = 2.4e�2).
without correlation (Figure 3E); and (3) low-dimensional shared

signals, which drive multiple neurons simultaneously, produce

correlations, and constrain activity to the shared space contain-

ing all possible shared signals (Figure 3F). Thus, FA models the

population’s total covariance matrix as the sum of the diagonal

covariance matrix due to uncorrelated private signals and the

low-rank covariance matrix due to shared signals, permitting

variance only within the shared space (Figures 3D and 3G). Our

use of private variance and shared variance specifically refers

to their respective covariance matrices. We emphasize that FA
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is fit for each target separately on the full simultaneously re-

corded direct cell population, not just neuron pairs as illustrated

for geometric intuition (Figures 3E–3J). Model fitting assessed

the shared space dimensionality (number of shared signals)

needed to best describe the firing rates (see STAR Methods).

We used FA to analyze how the neural population’s private and

shared variances change over learning (Figure 3D). First, the

magnitude of total variance can change (Figure 3H). Second,

the balance of shared and private variance can change, a mea-

sure of coordination that we quantified with the shared-to-total



Figure 3. To Model Neural Changes over BMI Learning, FA Decomposes Population Spike Counts into the Sum of Private and Shared Sour-

ces of Variance

(A) Independent neuron learning posits that each neuron explores and acquires independent patterns to control the BMI.

(B) Constrained-network learning posits that the neural population learns BMI control by exploring and changing covariation patterns in a fixed shared space, e.g.,

because of network connectivity constraints.

(C) Flexible-network learning posits that the neural population learns BMI control by exploring and changing both independent and covariation patterns and by

using its exploration to change the shared space of covariation patterns. For intuition of how independent and covariation patterns can contribute to movement

variability, see Figure S1.

(D) Factor Analysis (FA) decomposes the spike count covariance matrix into the sum of a diagonal private variance matrix and a low-rank shared variance matrix.

(legend continued on next page)
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variance ratio (Figure 3I). Third, the shared space containing

shared variance can change, which we quantified by calculating

the alignment between two epochs’ shared variances (Figure 3J;

STAR Methods). The shared space alignment, ranging between

0 and 1, asks how well Epoch B’s shared signals can approxi-

mate Epoch A’s shared signals. If Epochs A and B have perfectly

aligned shared spaces, then the alignment is 1, and if the shared

spaces are orthogonal, the alignment is 0. Thus, if the shared

space stays fixed over learning, as predicted by constrained-

network learning, we expect alignment values to be high

throughout training. In contrast, if the shared space consolidates

with learning, as predicted by flexible-network learning, we

expect high alignment values only in late learning. We used these

three analyses to study how private and shared sources of vari-

ance contribute to the exploration and consolidation of activity

patterns.

Over Learning, Private Trial-to-Trial Variability
Decreases while the Shared Space Changes and
Stabilizes
While previous studies have found trial-to-trial neural variability

decreases for a particular intended action over motor learning,

we used FA to ask how private and shared sources influenced

trial-to-trial variability. We analyzed firing rate variability at the

start of trials for each target separately. To avoid capturing

within-trial variance used for control, we extracted one spike

count vector from each trial in a large �1 s window locked to

Go Cue (Figure 4A, left). Subjects’ trial times determined the win-

dow size (Monkey P, 0.9 s; Monkey R, 1.3 s; see STAR Methods

for details), but the results were insensitive to window choice

(Figures S4B–S4D). We assessed private trial-to-trial variability

beyond that expected for a Poisson process by normalizing

each neuron’s private variance by its mean rate (see STAR

Methods). Shared trial-to-trial variability was calculated with

each neuron’s un-normalized shared variance because in

Poisson simulations, shared variance did not scale with the

experimentally observed firing rates (Figure S5B). This analysis

enabled us to disambiguate between independent neuron

learning’s private trial-to-trial variability decrease, constrained-

network learning’s shared trial-to-trial variability decrease, and

flexible-network learning’s private trial-to-trial variability

decrease and shared space consolidation.

FA applied to a neuron pair in early and late training is shown

for illustration (Figure 4A), showing a decrease in private trial-to-

trial variability, an increase in shared-to-total variance ratio, and

rotation of the shared space. At the direct cell population level,

FA found only one shared dimension was needed for each target

and epoch. Consistent with the example, we found initially large
(E) Private signals modulating two neurons’ firing rates. Each scattered gray ‘‘x’’ i

neuron 1.

(F) Shared signals modulating two neurons’ firing rates within a one-dimensional

(G) FA describes the mixture of private and shared variance underlying populatio

(H) FA detects changes in the total magnitude of variance.

(I) FA also detects changes in the shared-to-total variance ratio, quantifying how s

ratio plus the private-to-total ratio equals 1.

(J) FA detects changes in how the population co-varies using the shared space a

variance captured in Epoch B’s shared space.
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private trial-to-trial variability, which decreased prominently over

training (Figures 4B and S2A). In contrast, shared trial-to-trial

variability showed no significant trend, resulting in an increase

in the shared-to-total variance ratio (un-normalized by firing

rate) over long-term training (Figures 4C and S2C). These results

suggest that neural activity space exploration in early learning

was primarily accomplished with private trial-to-trial variability.

The decrease in private trial-to-trial variability was correlated

with success rate over training (Figures 4D and S2B), indicating

the subjects produced desired activity as private trial-to-trial

variability reduced.

While the magnitude of shared trial-to-trial variability showed

no change, its subspace consolidated over training. We as-

sessed the shared space alignment between epoch pairs (Fig-

ure 4E, left; Figure S2D, left) and found the alignment with the

final epoch’s shared space increased with training (Figure 4E,

right; Figure S2D, right), correlating with the subject’s success

rate (Figures 4F and S2E). Notably, the emergent shared space

possessed a significantly different alignment from the initial

shared space. Altogether, these results support flexible-network

learning, showing that initial trial-to-trial variability is private to

each neuron, and as private trial-to-trial variability decreased,

the shared space evolved and consolidated.

Decoder-Timescale Shared Variance Strengthens and
Consolidates to Coordinate Population Activity
Having analyzed coarse-timescale trial-to-trial variability, we

next zoomed in temporal resolution and asked how private and

shared sources contributed to control-relevant activity at the

decoder timescale of 100 ms bins (decoder bin size) for each

target separately. Decoder-timescale neural variance can be in-

terpreted as signal strength for BMI control, in contrast to our

previous analysis on trial-to-trial variability. We thus use FA to

study if the independent neuron, constrained-network, or flex-

ible-network model best describes how learning changes

decoder-timescale population activity driving control.

We first observed population activity became lower dimen-

sional, as the shared dimensionality describing the 100 ms spike

counts within all trials to a single target decreased from�4 to�2

in late training (Figure 5B). Because the brain found a two-dimen-

sional neural solution in late training, we compared shared

variance over training in the two neural dimensions that captured

the most shared variance, which we call the ‘‘main shared vari-

ance’’ (see STAR Methods). Note that high-dimensional shared

variance did not constitute a significant fraction of total variance

(Figure S5F).

FA applied to a neuron pair in early and late training is shown

for illustration, in which shared variance increased and rotated
s a binned population spike count. Neuron 2 has a larger private variance than

shared space.

n activity.

hared and private variance change in different proportions. The shared-to-total

lignment between Epochs A and B, which is the fraction of Epoch A’s shared



Figure 4. Private Trial-to-Trial Variability Decreases and the Shared Trial-to-Trial Variability Consolidates a Shared Space

(A) Trial-to-trial variability example: FA fit on two direct cells in early and late training for Monkey P on one example target.

(B) Private trial-to-trial variability for Monkey P (main) and Monkey R (inset) decreased (Monkey P, r = �0.93, p = 6.7e�7, early > late p = 1.1e�8; Monkey R,

r = �0.81, p = 2.7e�2, early > late p = 2.2e�2).

(C) The shared-to-total variance ratio increased over long-term training (Monkey P, r = 0.83, p = 1.1e�4, early < late p = 8.1e�3), but not significantly over shorter

training (Monkey R, r = 0.27, p = 5.5e�1, early < late 8.2e�2).

(D) The private trial-to-trial variability decrease correlated with success rate improvement (Monkey P, r = �0.96, p = 1.9e�8; Monkey R, r = �0.79, p = 3.5e�2).

(E) (Left) The shared space alignment map indicated consolidation. Each element is the alignment of the row epoch’s shared variance with the column epoch’s

shared space. The upper right red block indicates that the shared space becomes relatively stable, while the preceding blue indicates the shared space is

unstable in early training. (Right) The shared space alignment between the final epoch’s shared space and the preceding epochs’ shared variance increased with

long-term training (Monkey P, r = 0.83, p = 2.6e�4, early < late p = 5.8e�4; Monkey R, r =�0.12, p = 8.2e�1, early > late p = 4.9e�1). The mean chance variance

alignment is 0.07, and the 95th percentile chance alignment is 0.25 for Monkey P (see STAR Methods).

(F) The shared space alignment with the final epoch’s shared space correlated with success rate over long-term training (Monkey P, r = 0.88, p = 3.3e�5; Monkey

R, r = 0.07, p = 9e�1). Changes in mean firing rate do not explain these results (Figure S5). These results also held for analyses over training days rather than

epochs (Figure S2) and different window lengths (Figure S4).

Error bars represent SEM over targets (n = 8 for each subject).
(Figure 5A). In concordance, in the entire direct cell population,

we found main shared variance increased prominently while pri-

vate variance decreased mildly over long-term training (Figures
5C and S3A), increasing the main shared-to-total variance ratio

by a factor of�2 (Figures 5D andS3B). These results are not spe-

cific to our bin width selection, as they held over a range of bin
Neuron 93, 955–970, February 22, 2017 961



Figure 5. Decoder-Timescale Shared Variance Increases and Consolidates a Shared Space

(A) Decoder-timescale variance example: FA fit on two direct cells in early and late training for Monkey P on one example target.

(B) The shared dimensionality decreased from�4 to�2 (Monkey P, r =�0.85, p = 5.7e�5, early > late p = 1.4e�7;Monkey R, r =�0.80, p = 3.1e�2, early > late p =

9.8e�5). We used a main shared dimensionality of 2 (see STAR Methods).

(C) Main shared variance increased with training (Monkey P, r = 0.92, p = 8.1e�7, early < late p = 1.9e�5; Monkey R, r = 0.84, p = 2.0e�2, early < late p = 1.2e�5).

(D) The ratio of main shared variance to total variance increased with training (Monkey P, r = 0.95, p = 7.1e�8, early < late p = 2.2e�6; Monkey R, r = 0.76, p =

4.6e�2, early < late p = 1.2e�4).

(E) Main shared variance correlated with success rate (Monkey P, r = 0.98, p = 1.9e�10; Monkey R, r = 0.69, p = 8.6e�2).

(F) (Left) Shared space alignmentmap. The upper right red block indicates the shared space becomes stable, while the preceding blue indicates the shared space

is changing in early training. (Right) Alignment with the final epoch’s shared space increased with training (Monkey P, r = 0.95, p = 1.8e�7, early < late p = 9.6e�9;

Monkey R, r = 0.96, p = 2.2e�3, early < late p = 2.2e�6). The mean chance alignment is 0.13 (Monkey P) and 0.20 (Monkey R) and 95th percentile chance

alignment is 0.28 (Monkey P) and 0.40 (Monkey R).

(G) Alignment with the final epoch’s shared space correlated with success rate improvement (Monkey P, r = 0.99, p = 7.7e�11; Monkey R, r = 0.92, p = 8.3e�3).

Changes in mean firing rate do not explain these results (Figure S5). These results also held for analyses over training days rather than epochs (Figure S3) and

different bin widths (Figure S4).

Error bars represent SEM over targets (n = 8 for each subject).
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sizes (Figure S4E). Further, main shared variance correlated with

success rate (Figures 5E and S3C), suggesting that it was used

for control.

We next tested whether a shared space was consolidated over

training for decoder-timescale variance. By analyzing the main

shared space alignment, we found a period of relative instability

in early learning followed by a period of stability in late learning

(Figure 5F, left). Notably, the stable main shared space of late

training was significantly different from the main shared spaces

explored in early training (Figure 5F, right). Further, the alignment

of main shared variance to the final epoch correlated with

success rate (Figure 5G), suggesting main shared variance

consolidation supported learning. These results support the flex-

ible-network learning mechanism, suggesting that learning pro-

ceeds by increasing shared variance within an emergent shared

space that coordinates activity used for BMI control.

Decoder-Timescale Private Variance Contributes Noisy
yet Successful Control, while Consolidated Shared
Variance Supports Skillful Control
Decoder-timescale private and shared variance changed differ-

ently over training, so we leveraged the decoder to ask how they

contributed to cursor control. Mathematically, both sources are

feasible strategies for generating a desired control signal (Fig-

ure 6A, left). Private variance represents the limit of high-dimen-

sional activity, such that the population exhibits no correlations,

and still can possess the temporal structure to generate desired

control signals in the readout space (Figure 6A, middle). Shared

variance captures low-dimensional covariation patterns and also

can generate desired control signals in the readout space (Fig-

ure 6A, right). For each target and epoch, we fit an FA model

on decoder-timescale spike counts and used it to calculate the

contribution of main shared and private variance to each individ-

ual trial of activity (see STAR Methods). We then used the main

shared and private variance contributions as separate inputs to

the decoder and compared the resulting control signals (Fig-

ure 6B). Best trials produced by each source are shown, illus-

trating that both private andmain shared variance could produce

good control.

Under independent neuron learning, the population uses pri-

vate variance for BMI control, while for constrained-network

learning, the population uses shared variance. Because flex-

ible-network learning permits both sources to contribute to con-

trol, we might expect private variance to dominate exploratory

control in the beginning, while shared variance might contribute

refined control in the end. Interestingly, both private and main

shared variance improved how close they drove the cursor to

the target (Figure 6C). However, when we compared late training

trials for which both sources achieved the target (Monkey P, 832

trials; Monkey R, 385 trials; Figure 6D), we observed that main

shared movements were faster (average time difference, Mon-

key P,�0.80 s;Monkey R,�0.66 s) andmore direct (average dis-

tance difference, Monkey P, �1.6; Monkey R, �4.0, in units of

distance from center to target) (Figures 6E and 6F). Thus, in

late training, main shared variance contributed more skillful con-

trol. Indeed, offline analysis suggests main shared variance can

even produce more skillful control than the total activity (Figures

S6B–S6D).
Main shared variance was not always better than private

variance, however. In early training, private variance achieved

positions closer to target (Figure 6C), and total activity-driven

movements exploredmore of the workspace thanmain shared

movements (Figure 6G). This suggests that initial main shared

variance did not vary within the readout space, and that pri-

vate variance served an exploratory role in early training by

contributing behavioral variability. In support of flexible-

network learning, private and main shared variance provided

different contributions to performance improvement, with

main shared variance contributing more skillful control in late

learning.

Control-Relevant Shared Variance Increases because of
Shared Variance Growth and Re-alignment
How does decoder-timescale shared variance support skillful

control (Figure 6D)? We asked how main shared variance occu-

pied the decoder’s readout space to produce control signals

(Figure 7A), finding that main shared variance in the readout

space increased over training (Figure 7B). Two independent

mechanisms exist that increase readout space shared variance.

First, shared variance itself can increase (magnitude growth; Fig-

ure 7C, left), as we already found (Figure 6A). Second, the shared

space can rotate to align with the readout space (re-alignment),

thus making shared variance more efficient in producing control

signals (Figure 7C, right). We quantified the relative contributions

of these twomechanisms by computing the factor bywhichmain

shared variance grew and the factor bywhichmain shared space

alignment with the readout space grew. The product of these two

yields the factor by which readout space main shared variance

grew. Interestingly, both mechanisms significantly increased

over training (Figure 7D). This provides one explanation for the

changes in the main shared space; it can align with the readout

space, makingmain shared variancemore effective in producing

control signals. These results provide a glimpse of how motor

cortex can strengthen and optimize population coordination for

neuroprosthetic control.

Fine-Timescale Shared Neural Trajectories Are
Consolidated, Which Produces Accurate Movement
Having analyzed how the consolidated main shared variance re-

lates to the readout space, we asked whether the covariation

patterns consolidated a temporal sequence that supported skill-

ful control, since shared variance can arise with or without

consistent neural trajectories (Figure 8A). To investigate tempo-

ral structure, we used finer bins (50 ms) than the decoder time-

scale (100 ms), and for each individual target and epoch, we fit

FA and calculated the main shared variance contribution to

each trial’s activity and trial averaged to form the main shared

trajectory (see STAR Methods). Early epochs showed no pro-

nounced pattern, while later epochs showed a large and consis-

tent trajectory (Figures 8A and 8B). We found that the magnitude

of each target’s main shared trajectory increased (Figure 8D) and

that the similarity of each target’s main shared trajectory to the

final epoch increased (Figure 8E), demonstrating neural trajec-

tory consolidation.

Was all the observedmain shared variance due to these emer-

gent neural trajectories? We took each trial’s main shared
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Figure 6. Decoder-Timescale Private Variance Produces Noisy yet Successful Movements, While Shared Variance Generate Skillful

Movements

(A) Both private and shared signals can mathematically produce the same desired control signal. (Left) The desired control signal is shown over time, and its

values are plotted on neuron firing rate axes. The readout value is the sum of the two neurons’ firing rates. The dashed lines are contours that capture firing rates

yielding the same sum. (Middle) The neurons’ activity is uncorrelated and produces the desired control signal. (Right) The neurons’ activity is perfectly correlated

and produces the desired control signal.

(B) The contribution of private and shared variance to each trial’s activity can be estimated and simulated through the decoder separately to determine how they

independently contribute to movement.

(C) Both main shared and private variance increased best progress to target over training. Private variance; Monkey P, r = 0.85, p = 5.7e�5, early < late

p = 2.7e�6; Monkey R, r = 0.75, p = 5.3e�2, early < late p = 3.0e�2. Main shared variance; Monkey P, r = 0.94, p = 2.0e�7, early < late p = 3.1e�8; Monkey R,

r = 0.74, p = 5.8e�2, early < late p = 9.6e�3.

(D) Example trials driven by main shared and private variance from the final epoch for each target.

(legend continued on next page)
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Figure 7. Task-Relevant Shared Variance

Increases because of Shared Variance

Growth and Re-alignment

(A) Shared variance can drive the decoder by

producing variance in the decoder’s readout

space.

(B) Main shared variance in the readout space

increased (Monkey P, r = 0.90, p = 6.6e�6, early <

late p = 8.5e�9; Monkey R, r = 0.85, p = 1.5e�2,

early < late p = 8.4e�5).

(C) Shared variance can increase in the readout

space by two mechanisms. (Left) An increase in

shared variance magnitude increases the readout

space shared variance, as long as the shared

space and readout space initially align. (Right) Re-

alignment of the shared space with the readout

space increases the readout space shared vari-

ance. Readout space shared variance growth is

the product of the magnitude growth and re-

alignment.

(D) Magnitude growth and re-alignment both

increased for main shared variance, plotted as the

ratio of each epoch’s value to the first epoch’s

value. Magnitude growth factor; Monkey P, r =

0.93, p = 7.3e�7, early < late p = 3.1e�4; Monkey

R, r = 0.82, p = 2.4e�2, early < late p = 1.6e�5. Re-

alignment factor; Monkey P, r = 0.84, p = 9.9e�5,

early < late p = 8.2e�6; Monkey R, r = 0.17, p =

7.2e�2, early < late p = 6.2e�1. While shared

space alignment with the readout space increased, note that a significant fraction of shared variance remained outside the readout space in late learning

(Figure S6A).

Error bars represent SEM over targets (n = 8 for each subject).
variance contributions and subtracted the trial-averaged main

shared trajectory, leaving behind main shared variation beyond

that due to the average trajectory, and calculated how much

main shared variance remained. The large fraction of remaining

main shared variance shows that the observed coordination of

population activity is not simply explained by the activity’s

average time course. Interestingly, initial main shared variance

showed no trial-averaged neural trajectory. The fraction of

main shared variance due to the average neural trajectory

increased with training (Figure 8F), showing that main shared

variance became increasingly temporally structured over

learning. Finally, we tested whether the main shared trajectories

were sufficient for generating neuroprosthetic control. We

applied them through the decoder and found that they evolved

over learning to generate straight and accurate movements in

late training (Figures 8G and 8H). These results show that emer-

gent shared temporal structure produces control signals for skill-

ful movement.
(E) In late training, successful main shared variance-driven movements were sig

private time to target; Monkey P, mean = �0.80 s, main shared < private p = 1.8

(F) In late training, successful main shared variance-drivenmovementswere signifi

private distance traveled; Monkey P, mean = �1.6, main shared < private p = 3.

estingly, main shared variance achieved higher performance than even total acti

For (E) and (F), late training trials were analyzed for which both private andmain sh

epochs 4–7, 385 trials).

(G) Total activity-driven movements explored the workspace more thanmain shar

Monkey P, p = 2.5e�9; Monkey R, p = 3.2e�9).

Error bars represent SEM over targets (n = 8 for each subject).
DISCUSSION

There are substantial challenges to investigating the neural basis

of classical motor skill learning, as experimenters cannot observe

all cells driving movement, cannot track the precise neural-move-

ment transformation, and cannot analyze how a complete task-

relevant population coordinates over learning. In this work, we

leverage the reduced preparation of the BMI paradigm to study

how the direct cells driving the decoder explored activity patterns

from trial to trial, and how they consolidated control signals under-

lying skillful movement. Using FA, we uncovered that private and

shared signals both evolve and contribute to control differently in a

task-relevant population over training.

Private Signals Contribute Initial Neural and Prosthetic
Variability
Previous studies have shown that neural variability reduction inmo-

tor brain areas accompanies motor adaptation (Mandelblat-Cerf
nificantly faster than private variance-driven movements (main shared minus

e�56; Monkey R, mean = �0.66 s, main shared < private: p = 4.3e�11).

cantly more direct than private variance-drivenmovements (main sharedminus

2e�52; Monkey R, mean = �4.0, main shared < private p = 2.49e�22). Inter-

vity (Figure S6).

ared variances were successful (Monkey P, epochs 8–15, 832 trials; Monkey R,

ed variance-driven movements, especially in early training (main shared < total,
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Figure 8. Shared Neural Trajectories Are

Consolidated at Fine Timescale, Which Pro-

duces Accurate Movement

(A) Shared variance can arise without a consistent

neural trajectory (left) or with a consistent neural

trajectory (right).

(B) For one example target, every epoch’s trial-

averaged main shared trajectory is plotted in the

same informative two-dimensional plane of the

high-dimensional neural space (see STAR

Methods).

(C) Six example cells’ main shared time course

over training epochs for one target.

(D) The magnitude of the main shared trajectory

increased, as quantified by the squared norm

(Monkey P, r = 0.95, p = 8.8e8, early < late p =

9.1e�7; Monkey R, r = 0.86, p = 1.3e�2, early <

late p = 1.0e�6).

(E) The correlation between each epoch’s main

shared trajectory and the final epoch increased

and stabilized (Monkey P, r = 0.98, p = 3.0e�9,

early < late p = 2.2e�9; Monkey R, r = 0.93, p =

6.3e�3, early < late p = 5.5e�8).

(F) The percent of fine-timescale main shared

variance due to the trial-averaged main shared

trajectory increased (Monkey P, r = 0.96, p =

9.7e�9, early < late p = 4.4e�6; Monkey R, r =

0.77, p = 4.4e�2, early < late p = 7.1e�5).

(G and H) The trial-averaged main shared trajec-

tory simulated through the decoder increased

movement accuracy (Monkey P, r = 0.92, p =

1.4e�6, early < late p = 1.6e�8; Monkey R, r =

0.84, p = 1.8e�3, early < late p = 5.9e�4).

Error bars represent SEM over targets (n = 8 for

each subject).
et al., 2009), procedural learning (Barnes et al., 2005), skill learning

(Costa et al., 2004; Kao et al., 2005; Peters et al., 2014; Santos

et al., 2015), and neuroprosthetic learning (Arduin et al., 2013;

Zacksenhouse et al., 2007), suggesting that the brain searches

for goal-achieving patterns by modulating neural variability. We

asked how a task-relevant neural population coordinates to search

for goal-achieving activity patterns. By dissecting total trial-to-trial

variability with FA, we found that initially large trial-to-trial variability

that is private to each neuron decreases over training (Figure 4B).

This result extends Zacksenhouse et al. (2007), who found that

early neuroprosthetic training was accompanied by increased total

firing rate variability that was unexplainedbyBMI kinematics. Thus,

a task-relevant population can explore activity space by increas-

ingly varying each neuron independently, suggesting that the brain
966 Neuron 93, 955–970, February 22, 2017
possesses flexibility in finding goal-

achieving patterns throughout population

activity space.

How did initial decoder-timescale pri-

vate variance contribute to cursor vari-

ability? We supplied shared and private

variance separately as simulated inputs

to the decoder and found that private vari-

ance contributed large cursor workspace

exploration in early training (Figure 6G),

which achieved positions closer to the
target, while shared variance initially had little impact on control

(Figure 6C). Thus, our findings suggest that each neuron in the

task-relevant population uses independent patterns to explore

behavioral states in early learning.

Role of Private Signals in Solving the Credit Assignment
Problem
Neuroprosthetic learning studies provide intriguing evidence

that the brain can solve the credit assignment problem by spe-

cifically adapting the neurons that contribute to the global error

signal provided by prosthetic cursor feedback (Ganguly et al.,

2011; Gulati et al., 2014; Jarosiewicz et al., 2008; Koralek

et al., 2013). To explain changes specific to the neurons driving

errors, neuroprosthetic learning models require private neural



noise to provide a beneficial exploratory signal for learning (Hé-

liot et al., 2010; Legenstein et al., 2010). Thesemodels posited a

fixed level of exploratory neural noise, and simulations indi-

cated that this noise can hurt final cursor performance. Thus,

our observation of initially large and later reduced private

trial-to-trial variability is consistent with the view that motor cor-

tex varies neurons independently to learn their contribution to

control and then reduces this variability to generate refined

control.

Shared Variance Consolidates for Skillful
Neuroprosthetic Control
It is known that particular neural ensembles (Cao et al., 2015;

Peters et al., 2014) and spatiotemporal patterns are consoli-

dated during natural motor learning (Costa et al., 2004; Peters

et al., 2014; Santos et al., 2015) and neuroprosthetic learning

(Carmena et al., 2003; Ganguly and Carmena, 2009; So et al.,

2012a), but less is known about whether and how the popula-

tion coordinates over learning. We asked the following: for

skilled control, does each neuron use independent patterns,

or does the population utilize covariation patterns? For both

trial-to-trial variability and decoder-timescale activity, we

found that the shared-to-total variance ratio increased (Fig-

ures 4C and 5D) and that population activity is coordinated

in a stable, low-dimensional shared space (Figures 4E and

5F). Using decoder simulations, we observed that emergent

decoder-timescale shared variance contributed more skillful

control than both private variance and total activity (Figures

6E, 6F, S6C, and S6D). We hypothesize that the population

finds this solution by selecting particular shared inputs that

produce goal-achieving activity within a characteristic

manifold.

Flexibility in Acquiring Neural Patterns
Recent studies have asked how flexible the brain is in acquiring

neural patterns for neuroprosthetic control (Hwang et al., 2013;

Sadtler et al., 2014). Sadtler et al. (2014) found that the structure

of shared neural variance plays a causal role in neuroprosthetic

learning; given one training session, it was easier for a subject

to produce control signals within an existing BMI manifold of

shared variance than outside the BMI manifold. Another study

(Hwang et al., 2013) found that subjects can operate a BMI by

re-purposing activity patterns associated with their physical

movements. Thus, given a familiar task context, subjects more

readily select neural patterns within their pre-existing repertoire,

facilitating rapid control.

In our study, subjects possess no starting BMI control strategy

as they learn a neuroprosthetic skill de novo over days of training.

Using a decoder that permitted decoder-timescale variance

from both private and shared sources as input, the neural popu-

lation’s initial shared variance turned out to be small (Figure 5C),

misaligned with the decoder (Figures 7B and S6A), and pro-

duced neither significant cursor variability (Figure 6G) nor accu-

rate movements (Figure 6C). Instead, the population initially

generated private variance unconstrained to a manifold (Fig-

ure 5C), and over training, shared variance increased and a

BMI manifold emerged containing consolidated neural trajec-

tories for skillful control (Figures 6E, 6F, and 8H). Because private
variance permits subjects to observe the behavioral conse-

quence of activity patterns outside the initial shared space, it

may enable the consolidation of BMI manifolds and increase

the space of patterns and thus decoders that subjects can learn.

We hypothesize this flexible neural exploration and consolidation

mechanism is employed for long-term novel skill learning,

distinct from the more constrained neural exploration used for

faster learning.

Refined Control through Matching of Neural Activity to
the Effector
To control a novel effector, subjects must discover motor control

neural activity that is matched to the effector. A recent neuro-

prosthetic learning study found that changes in neurons’ mean

firing rates across movement directions correlate with the de-

coder’s properties (Orsborn et al., 2014). In this work, we asked

how neural dynamics for individual movement directions drive

the decoder (Figure 7A), finding that shared variance in the de-

coder’s readout space increased over training (Figure 7B). This

occurs both because shared variance increases overall, and

because the shared space aligns with the readout space

(Figure 7D). Thus, neuroprosthetic skill emerges as subjects

consolidate shared variance matched to the decoder. Given

that subjects could also generalize control for untrained reaches

(Ganguly and Carmena, 2009), these neural changes may reflect

the development of an internal model for BMI control (Golub

et al., 2015; Héliot et al., 2010).

How might our findings extend to acquiring novel motor skill,

which requires generating novel control signals to the body?

The brain’s task in BMI approximates current models of the

brain’s function in natural motor learning. Our decoder is a linear

readout of neural activity into control signals, just as a common

model posits muscles perform a linear readout of motor cortical

activity (Churchland et al., 2012; Kaufman et al., 2014; Lillicrap

and Scott, 2013). In analogy to motor cortical control of the

decoder, motor control studies suggest that motor cortex gener-

ates neural control signals for our biomechanical plant, showing

that motor cortical activity contains information about muscle-

level dynamics as well as kinematics (Sergio et al., 2005) and

possesses statistics that reflect the biomechanics it must control

(Lillicrap and Scott, 2013). Thus, our findings on private and

shared neural variance in motor cortex could apply to exploring

and consolidating physical movements.

Refined Control through Consolidation of Coordinated
Neural Trajectories
Becausewe observed decoder-timescale shared variance could

produce skilled cursor movements (Figures 6D–6F), we asked

whether covariation patterns acquired a temporal sequence at

a fine timescale that supported learning. Interestingly, initial

covariation patterns do not traverse a consistent trajectory (Fig-

ure 8D). Over training, as a shared space consolidates, neural

trajectories consolidate within the shared space (Figures 8E

and 8F) that are sufficient to drive straight and accurate cursor

movements (Figures 8G and 8H). Future work will need to

analyzewhether these emergent temporal patterns obey dynam-

ical rules such as those underlying natural motor control

(Churchland et al., 2012; Kao et al., 2015).
Neuron 93, 955–970, February 22, 2017 967



One interesting observation is that a large fraction of shared

variance exists outside the readout space and thus does not

directly drive the cursor (Figure S6A), possibly reflecting internal

neural dynamics necessary to generate the control signal to the

decoder. This is consistent with motor control hypotheses that

large neural populations exploit their high dimensionality such

that neural activity can obey lawful dynamics while a linear

readout of the activity can produce flexible movements (Church-

land et al., 2012) and can prepare movements without executing

them (Kaufman et al., 2014). Interpreting neural data will be aided

by modeling how neural networks might learn dynamics for BMI

control as is being done for motor control (Hennequin et al.,

2014; Sussillo et al., 2015).

Biological Sources of Private and Shared Variance:
Noise and Supporting Networks
We note that private variance in the direct cells can arise from

multiple processes (Faisal et al., 2008): (1) ‘‘noisy’’ intrinsic

spiking variance at a fixed firing rate, such as in a Poisson Pro-

cess with fixed firing rate; (2) the action of private input activity

changing the cell’s underlying firing rate; and (3) input activity

structure that FA does not model, for example, time-varying

shared variance. We used Poisson simulations to ensure chang-

ingmean firing rate did not explain our observed trial-to-trial vari-

ability changes (Figure S5). In the latter two cases, some of the

variance that is private in the population of direct cells may be

shared with unobserved cells in connected networks. Thus, pri-

vate variance need not be purely corruptive noise, a simplifying

assumption sometimes made (Santhanam et al., 2009).

Cells in M1 likely possess tens of thousands of synapses

(Cragg, 1967); the input activity space is very high dimensional.

Some of these inputs may be independent for each recorded

cell while some may be coordinated across cells. These two

classes of inputs would drive distinct statistical population vari-

ance, which FA attempts to describe with shared and private

variance. There are many potential biological implementations

for the observed increase in consistency and coordination in

the direct cell population. Private trial-to-trial variability can

decrease because variable private inputs becomemore consis-

tent or their synaptic weights to direct cells weaken. Decoder-

timescale shared variance can increase because anatomically

shared inputs strengthen in signal or synaptic weight or

because non-anatomically shared inputs become coordinated.

Our FA results suggest new hypotheses about the neural sub-

strate of skill learning in the direct cells and the supporting

network.

Indeed, a growing body of research indicates that during BMI

control, the brain can enter a novel, wide-scale state producing

new representations in indirect cells (i.e., not connected to the

BMI) in M1 (Clancy et al., 2014; Ganguly et al., 2011; Gulati

et al., 2014; So et al., 2012b), in primary sensory cortex (Clancy

et al., 2014), across cortical areas (Wander et al., 2013), and in

striatum (Koralek et al., 2013, 2012). These functional changes

are subserved by ensemble re-activation during slowwave sleep

(Gulati et al., 2014) and corticostriatal plasticity (Koralek et al.,

2012), and suggest that emergent task-relevant coordination is

driven by the formation of large-scale circuits including cortico-

striatal loops.
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Implications for Neural Prostheses
Advances in neural engineering have produced algorithms to

facilitate high performance even when decoders are re-trained

frequently. How might decoder and neural adaptation syner-

gize? Recent work shows closed-loop decoder adaptation

(CLDA), which uses information about the task goal to fit the

decoder to the subject’s explored activity patterns (Dangi

et al., 2013; Gilja et al., 2012; Shanechi et al., 2016), can

improve performance in conjunction with neural learning (Ors-

born et al., 2014). Future decoders might benefit from more

detailed models of neural population dynamics and how they

change with learning. Indeed, a recent algorithmic approach

yielded significant performance improvement bymodeling neu-

ral population dynamics underlying natural movements to

decode the subject’s intent while moving freely (Kao et al.,

2015). Perhaps neural learning can help to generalize this

approach to immobile patients, as we found coordinated neural

dynamics can be consolidated over training in the absence of

overt movement. Given our findings that main shared variance

achieves better performance than total activity in simulations

(Figures S6B–S6D), a performance-motivated extension would

be to design a decoder that is able to denoise neural observa-

tions based on learned neural dynamics (Shenoy and Car-

mena, 2014).

In conclusion, this study uncovers the emergence and consol-

idation of coordinated dynamics for BMI control, highlighting the

potential for neural prostheses to become more natural and

automatic to the user, as well as an experimental tool for future

investigations on the neural basis of skill learning.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Mucacca mulatta) UC Davis N/A

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

Plexon Sort Client and Wavetracker Plexon http://www.plexon.com/products/software

Other

Plexon MAP System Plexon http://www.plexon.com/products/

multichannel-acquisition-processor-map-data-acquisition-system

Microwire arrays Innovative Neurophysiology http://www.inphysiology.com/fixed-arrays/

NHP Kinarm exoskeleton BKIN Technologies http://www.bkintechnologies.com/bkin-products/nhp-kinarm-

exoskeleton-lab/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Jose

M. Carmena (jcarmena@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two adult male rhesus monkeys (Macaca mulatta) (Monkey P, age: 7 years 1 month, weight: 15 kg; Monkey R, age 6 years, weight:

10.7 kg) were chronically implanted in the brain with arrays of 64 Teflon-coated tungstenmicroelectrodes (35 mm in diameter, 500 mm

pitch; Innovative Neurophysiology, Durham NC) in an 8 3 8 array configuration (Ganguly and Carmena, 2009). Monkey P was im-

planted in the left hemisphere in the arm area of both primary motor cortex (M1) and dorsal premotor cortex (PMd), and in the right

hemisphere in the arm area of M1, with a total of 192microwires across three implants. Monkey Rwas implanted bilaterally in the arm

area ofM1 and PMd (256microwires across four implants). Only activity fromM1was used in these BMI experiments (Monkey P: right

M1; Monkey R: left M1). Array implants were targeted for pyramidal tract neurons in layer 5. Localization of target areas was per-

formed using stereotactic coordinates from a neuroanatomical atlas of the rhesus brain (Paxinos et al., 2000).

All procedures were conducted in compliance with the NIH Guide for the Care and Use of Laboratory Animals and were approved

by the University of California at Berkeley Institutional Animal Care and Use Committee.

METHOD DETAILS

Electrophysiology
Neural activity was recorded using the MAP system (Plexon). Stable units were selected based on waveform shape, amplitude, rela-

tionship to other units on the same channel, inter-spike interval distribution, and the presence of an absolute refractory period. Only

units from primary motor cortex were used which had a clearly identified waveform with signal-to-noise ratio of at least 4:1. Activity

was sorted prior to recording sessions using an online spike-sorting application (Sort Client; Plexon). Stability of waveforms was

confirmed by analyzing the stability of PCA projections over days (Wavetracker; Plexon).

Experimental Setup and Behavioral Training
BMI Task

Subjects performed a center-out reaching task to eight targets (Figure 1A). The cursor was continuously controlled by neural activity.

Subjects self-initiated trials by moving to the center target. Peripheral targets were presented in pseudorandom order. A successful

trial required a short hold at the center, moving to the peripheral target within 15 s, and a brief hold at the target (Figure 1B). Successful

trials resulted in a liquid reward; failed trials were repeated.

During BMI control, both arms were removed from the workspace, lightly restrained, and thus unable to perform reaches. During

selected sessions, video and surface electromyogram (EMG) recordings from proximal muscle groups were performed. Neither an-

imal moved their upper extremity during brain control.
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Manual Control Training Before BMI

Before starting the BMI learning experiments, subjects were overtrained on the task performed with arm movements using a Kinarm

(BKIN Technologies) exoskeleton which restricted shoulder and elbow to move in the horizontal plane.

BMI Decoder
Decoding Algorithm

In this study, the decoder used neural activity to control the joint angles of a virtual, invisible two-link arm. A Wiener Filter linearly

mapped the binned spike counts of N neurons xðtÞ˛ RN in the last one second into virtual shoulder and elbow joint angles

yðtÞ˛ R2 via

yðtÞ=b+
XM
k = 0

aðkDÞxðt � kDÞ:

The fixed decoder parameters aðkDÞ˛ R2xN for k = 0;/;M and b ˛ R2 used in this study were fit via least-squares linear regression

to predict the subjects’ actual shoulder and elbow joint angles in a calibration manual control session (Ganguly and Carmena, 2009).

In this experiment, num lags= 10=M+ 1, and the spike count bin size was D = 100 ms. The joint kinematics forward model mapped

shoulder and elbow angles yðtÞ to endpoint position, the only feedback signal the subjects received. The joint positions yðtÞ and
endpoint feedback signal were updated every D = 100 ms.

Decoder Readout Space

We analyzed the decoder’s weights and determined that applying neural activity through the decoder is equivalent to first projecting

neural activity into a subspace (the decoder readout space) and then applying it through the decoder. The decoder produced

2-dimensional output by summing num lags= 10 linear combinations of neural activity, so we analyzed howmany neural dimensions

the decoder primarily leveraged to produce control. At maximum, it could be 10, e.g., if each lag used a different individual neuron’s

activity. We found the readout space dimensionality by evaluating the expression

aðkDÞzaðkDÞP;
for k= 0;/;M, where aðkDÞ are the decoder parameters, P ˛ RNxN is a projection matrix of rank L, and num lags= 10=M+ 1. (Note

that for L=N we have perfect equality.) P was found by performing PCA on the decoder parameters to compress neural dimension-

ality (as opposed to temporal dimensionality). L= 3 was sufficient for aðkDÞP to capture�97% of aðkDÞ parameter variance for Mon-

key P, and L= 5 captured �99% of parameter variance for Monkey R.

The decoder ‘‘readout space’’ is the column space of P, as we can reproduce BMI cursor movements by first projecting neural

activity into this space. Thus, we note that for our decoder, the readout space dimensionality is not the same as the cursor

dimensionality.

Quantifying Learning Over Training Epochs
We analyzed the behavioral and neural learning process for each target separately over ‘‘training epoch’’ blocks of a constant number

of trials. We chose the ‘‘training epoch’’ rather than the more standard ‘‘training day’’ because we wished to eliminate the effect of

variable trial numbers per training day on analysis results. Note that because subjects performed a different number of trials to each

target overall, the number of trials in a training epoch differs for each target. For Monkey P (Monkey R), the smallest epoch size is 23

trials (31 trials) and the largest is 36 trials (56 trials).

Behavioral Metrics
Task-performance Metrics

We quantified task performance using percent correct (fraction of initiated trials completed successfully) and success rate

(successful trials per minute). Success rate combines accuracy and speed and is given by ðnum successful trials=P
all trialstime to initiate trial+ time to complete trialÞ .

Cursor Variability Analyses

To analyze cursor variability, we analyzed the cursor trial-to-trial Spatial Occupancy Map (SOM) by discretizing the workspace

(each bin was 0.34% of the workspace) and computing the fraction of trials the cursor would enter each position bin. This was

computed for each target and training epoch as: ðSOMðpositionijÞ= num trials cursor enters positionij=num trialsÞ. We performed

three analyses. First, we assessed control refinement via the fraction of workspace entered per trial: ð1=num trialsÞ
ðPnum trials

triali = 1 ðnum bins enteredðtrialiÞ=num binsÞÞ. Second, we assessed the stability of the learned cursor control strategy via the

correlation between the final epoch SOM and previous epochs: corrðSOMepochi;SOMepochfinalÞ, for epochi = 1;/; epochfinal�1, where

corrða;bÞ= ðPN
i =1aibi=ðka k kb k ÞÞ is the standard vector correlation. Third and finally, we assessed the cursor’s trial-to-trial move-

ment variability by considering each trial as a vector of 0’s and 1’s indicating the cursor’s spatial occupancy. We computed the

covariance matrix using this parameterization of each trial and calculated the variability via the trace. We note that a decrease in

trial-to-trial variability is not a mathematical consequence of reduction in workspace explored, as it is possible for subjects to enter
e2 Neuron 93, 955–970.e1–e5, February 22, 2017



the same large fraction of the workspace consistently as well as to enter different small fractions of the workspace from trial-to-trial.

The trends found by these analyses are not sensitive to the discretization resolution; the same results were achieved with coarser

resolution, e.g., bins 4 times larger (data not shown).

Factor Analysis
Model

We used FA to model the joint distribution of N neurons’ spike counts x ˛ RN as the sum of 1) a mean rate m ˛ RN, 2) private signals

with diagonal covariance J ˛ RNxN, and 3) shared signals due to a low-dimensional latent variable z ˛ Rk , k <N:

z � Nð0; IÞ
x j z � Nðm+Uz; JÞ

�

x � N m; UUT +J
�
:

U ˛ RNxk are the weights (or factors) capturing how z drives x. We make explicit FA’s decomposition of population activity into

shared signals xshared =Uz ˛ RN and private signals xprivate˛ RN:

xprivate � N
�
0;Sprivate

�

shared
x � N
�
0;Sshared

�

private shared
x ; x independent
sha
x =m+ x red + xprivate;
shared T private
where S =UU ; S =J; and Stotal =Sshared +Sprivate:

For each target separately, we fit the model’s parameters by maximizing the log-likelihood of the data with the EM algorithm for

a chosen shared dimensionality k <N. The best-fitting shared dimensionality k is estimated by using cross-validated log-likelihood

to determine which k best describes held-out data (Dempster et al., 1977). To ensure we didn’t choose too high of shared dimen-

sionality, we analyzed the eigenvalues of the shared variance found using the dimensionality which maximized cross-validated

log-likelihood and evaluated howmany dimensionswere needed to capture 90%of shared variance.We used this estimate of shared

dimensionality throughout the work.

Comparison to Pairwise Correlation and PCA

To quantify correlated population activity, FA has advantages over more familiar measures such as average pairwise correlation and

PCA. First, pairwise correlation addresses how well one cell’s activity can predict another’s, while the cell’s shared-to-total variance

ratio indicates how well that cell’s activity can be predicted by the rest of the population together. Second, average pairwise corre-

lation does not tell us the data’s dimensionality. While PCA provides information about dimensionality, FA provides additional fea-

tures. FA is a probabilistic model which posits total covariance as the sum of shared and private variance, permitting analysis of

the two sources separately, while PCA analyzes dimensionality of total covariance.

Shared and Private Variance and the Shared-to-total Variance Ratio

Neuron i’s shared variance is Sshared
ii , private variance is Sprivate

ii , and total variance is Stotal
ii =Sshared

ii +S
private
ii . The population-average

variance is ð1=NÞtraceðSÞ= ð1=NÞPN
i = 1Sii. The population’s shared variance to total variance ratio is ðtraceðSsharedÞ=traceðStotalÞÞ.

Extracting Main Shared Variance

After fitting FA, we ordered shared signals by their variance by diagonalizing Sshared via the singular value decomposition (SVD) (Yu et al.,

2009). Throughout theworkwecompared thedecoder-timescale ‘‘main shared’’ variance, i.e., variancewithin the topp orthogonalized fac-

torswhich provide the best rank-p approximation ofSshared. For both subjects, p= 2, as that was the shared dimensionality in late learning.

Shared Space Alignment

We used the ‘‘shared space alignment’’ to measure the similarity between the shared variance (or main shared variance) of Epoch A

and Epoch B. The shared space alignment is the fraction of epoch A shared variance captured in epoch B’s shared space and thus

ranges from 0 to 1. For some geometric intuition, in the one-dimensional case (i.e., rankðSA;sharedÞ= rankðSB;sharedÞ= 1), the space

alignment is equivalent to cos q, where q is the angle between epoch A and epoch B’s one-dimensional shared space. We note

that the shared space alignment is asymmetric when shared dimensionality is greater than 1, such that alignment of A with B

need not be equal to the alignment of B with A.
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Let SA; shared be Epoch A’s shared variance, and Epoch B’s shared space is colðUBÞ, the column space of Epoch B’s factor matrix

UB. We computed the shared space alignment in three steps:

1. Compute PUB˛ RNxN, the projection matrix into colðUBÞ. This is PUB =VVT , where V is an orthonormal basis for colðUBÞ, e.g.,
calculated via the singular value decomposition SVDðUBUBT Þ=VSVT .

2. Project SA; shared onto colðUBÞ, which is PUBSA;sharedPT
UB .

3. Compute the alignment via ðtraceðPUBSA; sharedPT
UB Þ=traceðSA; sharedÞÞ.

This computation is used in Figures 4E, 5F, and 7D. In Figure 7D, main shared variance is projected into the readout space.

We computed the chance alignment by generating 100,000 random pairs of 1) a projection subspace of high dimensional neural

space and 2) identity covariance in a random subspace of high dimensional neural space, and calculating the mean and 95th percen-

tile of alignment. For Figure 4E, the projection subspace and covariance are both 1-dimensional in a 15-dimensional ambient space

(yielding mean chance alignment of 0.07 and 95th percentile chance alignment of 0.25). For Figure 5E, the projection subspace and

covariance are both 2-dimensional in a 15-dimensional ambient space for Monkey P (yielding mean chance alignment of 0.13 and

95th percentile chance alignment of 0.28) and 10-dimensional ambient space for Monkey R (yielding mean chance alignment of

0.20 and 95th percentile chance alignment of 0.40).

Trial-to-trial Variability of Shared and Private Signals
We analyzed trial-to-trial variability by applying FA to a data matrix˛ RN x num trials in which each column is one trial’s population spike

counts in a window (�1 s) locked to Go Cue. For each monkey, we chose the window length to be the longest amount of time such

that at least 70% of trials for every target and training epoch were longer (Monkey P 0.9 s; Monkey R 1.3 s) (Figure S4A). We removed

neurons with an average rate below 1.5 Hz because we had too few trials of non-zero activity to accurately estimate their variance.

Over targets and epochs, a median of 11 out of 15 neurons were used for Monkey P and 9 out of 10 neurons were used for Monkey R.

For all targets and epochs, the best-fitting shared dimensionality was 1, thus shared space alignment over training was between

shared spaces of equal dimensionality (Figure 4E).

We considered two components to spike count variability: fixed firing rate spiking variability (such as in a Poisson process) and

underlying firing rate variability (Churchland et al., 2010). We analyzed whether neural variability changes differed from changes ex-

pected with Poisson spiking variability by 1) normalizing each neuron’s private variance by its mean rate and 2) performing FA on

Poisson-simulated neurons (Figures S5B–S5E). The ratio of shared variance to total variance was calculated without any normaliza-

tion of private variance (Figure 4C).

Decoder-timescale Private and Shared Variance
We analyze decoder-timescale population variance for each target and epoch by binning trials in 100 ms bins and applying FA. Neu-

rons with firing rate below 1.5 Hz were excluded, as in the trial-to-trial variability analysis.

Sample-by-sample Contribution of Private and Shared Variance
Given an observed spike count at time t: xðtÞ, we used FA to estimate the shared and private variance contribution:

bxsharedðtÞ=E
�
xsharedðtÞj xðtÞ�=E½UzðtÞjxðtÞ�=UUT

�
UUT +J

��1ðxðtÞ � mÞ
bxprivateðtÞ= xðtÞ � bxsharedðtÞ � m:

The main shared variance contribution is the linear projection of bxsharedðtÞ into the main shared subspace (the top eigenvectors

of Sshared).

Trial-to-trial Decoder Simulations
To test the how decoder-timescale main shared variance and private variance independently contribute to control, we separately

supplied each trial’s main shared trajectory bxmain sharedðtÞ+m and private trajectory bxprivateðtÞ+m as input to the decoder for the

length of the observed trial. We quantified simulated performance using best progress to target, time to target hit (seconds),

and normalized distance traveled to target hit. Best progress to target was computed as ðmaxðclosest distance to target� target

radius;0Þ=ðdistance center to target� target radiusÞÞ˛½0; 1�, such that a value of 1 indicates the target was reached and 0 indicates

thecursorgotnocloser than thestartingcenterpoint.Distance traveled to targetwasnormalizedbydistance center to target. Tocompare

late learning shared and private control, we used trials for which both were successful (Figures 6E and 6F).

Relationship of Shared Variance to the Readout Space
We quantified shared variance in the decoder’s readout space via traceðPRS

sharedPT
RÞ, where PR is the projection matrix onto the

readout space (Figure 7B). It is the product of the shared variance magnitude traceðSsharedÞ and shared space alignment with the

readout space ðtraceðPRS
sharedPT

RÞ=traceðSsharedÞÞ, i.e., the fraction of shared variance captured in the readout space (Figures 7D
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and S6A). For each target and training epoch, we calculated the main shared variance magnitude and readout space alignment and

normalized by training epoch 1 values to yield a ‘‘magnitude growth factor’’ and an ‘‘alignment growth factor’’ (Figure 7D).

Shared Neural Trajectories at Fine-Timescale
To quantify shared neural trajectories, we zoomed in bin resolution to fine-timescale with 50 ms bins, performed FA on each target

and epoch separately, and calculated E½xmain sharedðtÞj xðtÞ� on each spike count time sample. We then trial averaged each trial’s main

shared trajectory (Figure 8BC). We quantified themagnitude of themain shared trajectory by taking the squared Frobenius norm (Fig-

ure 8D) and the stability of the trajectory by taking the correlation between each epoch’s main shared trajectory and the final main

shared trajectory (Figure 8E). The fraction of main shared variance explained by the averagemain shared trajectory was calculated as

follows. We took the difference between each trial’s main shared trajectory and the trial-averaged main shared trajectory within a 2 s

window and calculated howmuch main shared variance remained in these residuals. The main shared variance due to the trial-aver-

agedmain shared trajectory was 1� ðresidual main shared variance=main shared varianceÞ (Figure 8F). Finally, we supplied the trial-

averaged main shared trajectory as input to the decoder and quantified the progress to target (Figure 8H).

QUANTIFICATION AND STATISTICAL ANALYSES

All analyses were performed for each target separately, and each plotted trend shows the mean and SEM over targets (n = 8) for

each training epoch, as indicated in the Results and figure legends. Trends were analyzed for significance with linear regression.

Additionally, for both subjects we grouped the first 3 epochs into an early block and the final 3 epochs into a late block, resulting

in n = 24 in each group, from 3 epochs of 8 targets. For each analysis, we then performed a non-parametric one-sided Wilcoxon

rank sum test of the appropriate comparison between early and late median. p < 0.05 were considered statistically significant. All

statistical analyses were performed with custom scripts in MATLAB.
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