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Fueled by innovation in the computer vision and artificial 
intelligence communities, recent developments in 
computational neuroscience have used goal-driven hierarchical 
convolutional neural networks (HCNNs) to make strides in 
modeling neural single-unit and population responses in higher 
visual cortical areas. In this Perspective, we review the recent 
progress in a broader modeling context and describe some of 
the key technical innovations that have supported it. We then 
outline how the goal-driven HCNN approach can be used to 
delve even more deeply into understanding the development 
and organization of sensory cortical processing. 

What should one expect of a model of sensory cortex?
Brains actively reformat incoming sensory data to better serve their 
host organism’s behavioral needs (Fig. 1a). In human vision, retinal 
input is converted into rich object-centric scenes; in human audition, 
sound waves become words and sentences. The core problem is that 
the natural axes of sensory input space (for example, photoreceptor 
or hair cell potentials) are not well-aligned with the axes along which 
high-level behaviorally relevant constructs vary. For example, in vis-
ual data, object translation, rotation, motion in depth, deformation, 
lighting changes and so forth cause complex nonlinear changes in the 
original input space (the retina). Conversely, images of two objects 
that are ecologically quite distinct—for example, different individuals’ 
faces—can be very close together in pixel space. Behaviorally relevant 
dimensions are thus ‘entangled’ in this input space, and brains must 
accomplish the untangling1,2.

Two foundational empirical observations about cortical sensory 
systems are that they consist of a series of anatomically distinguish-
able but connected areas3,4 (Fig. 1b) and that the initial wave of neural 
activity during the first 100 ms after a stimulus change unfolds as a 
cascade along that series of areas2. Each individual stage of the cascade 
performs very simple neural operations such as weighted linear sums 
of inputs or nonlinearities such as activation thresholds and competi-
tive normalization5. However, complex nonlinear transformations can 
arise from simple stages applied in series6. Since the original input 
entanglement was highly nonlinear, the untangling process must also 
be highly nonlinear.

The space of possible nonlinear transformations that the brains  
neural networks could potentially compute is vast. A major challenge  
in understanding sensory systems is thus systems identification:  
identifying which transformations the true biological circuits are  
using. While identifying summaries of neural transfer functions (for 
example, receptive field characterization) can be useful7, solving  
this systems identification problem ultimately involves producing an 
encoding model: an algorithm that accepts arbitrary stimulus inputs 
(for example, any pixel map) and outputs a correct prediction of neural 
responses to that stimulus. Models cannot be limited just to explaining 
a narrow phenomenon identified on carefully chosen neurons, defined 
only for highly controlled and simplified stimuli8,9. Operating on arbi-
trary stimuli and quantitatively predicting the responses of all neurons 
in an area are two core criteria that any model of a sensory area must 
meet (see Box 1).

Moreover, a comprehensive encoding model must not merely 
predict the stimulus-response relationship of neurons in one final 
area, such as (in vision) anterior inferior temporal cortex. Instead, 
the model must also be mappable: having identifiable components  
corresponding to intermediate cortical areas (for example, V1, V2, 
V4) and, ultimately, subcortical circuits as well. The model’s responses 
in each component area should correctly predict neural response  
patterns within the corresponding brain area (Fig. 1c).

Hierarchical convolutional neural networks
Starting with the seminal work of Hubel and Wiesel10, work in visual 
systems neuroscience has shown that the brain generates invariant 
object recognition behavior via a hierarchically organized series of 
cortical areas, the ventral visual stream2. A number of workers have 
built biologically inspired neural networks generalizing Hubel and 
Wiesel’s ideas (for example, refs. 11–15). Over time, it was realized 
that these models were examples of a more general class of computa-
tional architectures known as HCNNs16. HCNNs are stacks of layers 
containing simple neural circuit motifs repeated across the sensory 
input; these layers are then composed in series. (Here, “layer” is used 
in the neural network sense, not in the cortical anatomy sense.) Each 
layer is simple, but a deep network composed of such layers com-
putes a complex transformation of the input data—analogous to the  
transformation produced in the ventral stream.

The motifs in a single HCNN layer
The specific operations comprising a single HCNN layer were inspired 
by the ubiquitously observed linear-nonlinear (LN) neural motif5. 
These operations (Fig. 1c) include (i) filtering, a linear operation that 
takes the dot product of local patches in the input stimulus with a set 
of templates, (ii) activation, a pointwise nonlinearity—typically either 

Using goal-driven deep learning models to understand 
sensory cortex
Daniel L K Yamins1,2 & James J DiCarlo1,2

1Department of Brain and Cognitive Sciences, Massachusetts Institute of  
Technology, Cambridge, Massachusetts, USA. 2McGovern Institute for Brain  
Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 
USA. Correspondence should be addressed to D.L.K.Y. (yamins@mit.edu).

Received 26 October 2015; accepted 13 January 2016; published online  
23 February 2016; doi:10.1038/nn.4244

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://dx.doi.org/10.1038/nn.4244
http://www.nature.com/natureneuroscience/


nature neuroscience  VOLUME 19 | NUMBER 3 | MARCH 2016	 357

a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear  
aggregation operation—typically the mean or maximum of local  
values13, and (iv) divisive normalization, correcting output values to 
a standard range17. Not all HCNN incarnations use these operations 
in this order, but most are reasonably similar. All the basic operations 
exist within a single HCNN layer, which is then typically mapped to 
a single cortical area.

Analogously to neural receptive fields, all HCNN operations are 
applied locally, over a fixed-size input zone that is typically smaller 
than the full spatial extent of the input (Fig. 1c). For example, on a 
256 × 256 pixel image, a layer’s receptive fields might be 7 × 7 pixels. 

Because they are spatially overlapping, the filter and pooling operations  
are typically ‘strided’, meaning that output is retained for only a  
fraction of positions along each spatial dimension: a stride of 2 in 
image convolution will skip every second row and column.

In HCNNs, filtering is implemented via convolutional weight shar-
ing, meaning that the same filter templates are applied at all spatial 
locations. Since identical operations are applied everywhere, spatial 
variation in the output arises entirely from spatial variation in the 
input stimulus. It is unlikely the brain literally implements weight 
sharing, since the physiology of the ventral stream and other sensory 
cortices appears to rule out the existence of a single master location in 
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Figure 1  HCNNs as models of sensory  
cortex. (a) The basic framework in which  
sensory cortex is studied is one of encoding—the process by which stimuli are transformed  
into patterns of neural activity—and decoding, the process by which neural activity generates  
behavior. HCNNs have been used to make models of the encoding step; that is, they describe  
the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade. 
It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AIT, anterior; 
RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(•), transformation. (c) HCNNs are multilayer neural 
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and 
normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a 
distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in 
layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive 
fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy 
decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image 
computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a 
component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning 
that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.

Box 1  Minimal criteria for a sensory encoding model 

We identify three criteria that any encoding model of a sensory cortical system should meet:
Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;
Mappability: The components of the model should correspond to experimentally definable components of the neural system; and
Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each 
mapped area.
These criteria may sometimes be in tension—insisting on mappability at the finest grain might hinder identifying models that actually work for complex 
real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-
tivity in simplified contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli, 
the utility of their lower-level verisimilitude is limited.
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which shared templates could be stored. However, the natural visual 
(or auditory) statistics of the world are themselves largely shift invari-
ant in space (or time), so experience-based learning processes in the 
brain should tend to cause weights at different spatial (or temporal) 
locations to converge. Shared weights are therefore likely to be a rea-
sonable approximation to the brain’s visual system, at least within the 
central visual field. The real visual system has a strong foveal bias, and 
more realistic treatment of nonuniform receptive field density might 
improve models’ fits to neural data.

Deep networks through stacking
Since convolutional layer outputs have the same spatial layout as their 
inputs, output of one layer can be input to another. HCNNs can thus 
be stacked into deep networks (Fig. 1c). Although the local fields seen 
by units in a single layer have a fixed, small size, the effective recep-
tive field size relative to the original input increases with succeeding 
layers. Because of repeated striding, deep HCNNs typically become 
less retinotopic with each succeeding layer, consistent with empirical 
observations4. However, the number of filter templates used in each 
layer typically increases. Thus, the dimensionality changes through 
the layers from wide and shallow to deep and narrow (Fig. 1c).  
After many strided layers, the spatial component of the output is 
so reduced that convolution is no longer meaningful, whereupon 
networks are typically extended using one or more fully connected 
layers. The last layer is usually used for readout: for example, for 
each of several visual categories, the likelihood of the input image 
containing an object of the given category might be represented by 
one output unit.

HCNNs as a parameterized model family
HCNNs are not a single model, but rather a parameterized model 
class. Any given HCNN is characterized by the following:

  �discrete architectural parameters, including the number of layers  
the network contains, as well as, for each layer, discrete parameters 
specifying the number of filter templates; the local radius of each  
filtering, pooling and normalization operation; the pooling type;  
and potentially other choices required by the specific HCNN imple-
mentation; and

  �continuous filter parameters, specifying the filter weights of  
convolutional and fully connected layers.

Though parameter choices might seem like mere details, subtle 
parameter differences can dramatically affect a network’s perform-
ance on recognition tasks and its match to neural data15,18.

Given the minimal model criteria described in Box 1, a key goal is 
identifying a single HCNN parameter setting whose layers correspond 
to distinct regions within the cortical system of interest (for example, 
different areas in the ventral stream) and which accurately predict 
response patterns in those areas (see Box 2).

While an oversimplification, the relationship between modifying 
filters and architectural parameters is somewhat analogous to that 
between developmental and evolutionary variation. Filter param-
eters are thought of as corresponding to synaptic weights, and their  
learning algorithms (see discussion of backpropagation below) 
update parameters in an online fashion. Changing architectural 
parameters, in contrast, restructures the computational primitives,  

•

•

Box 2  Mapping models to neural sensory systems 

How does one map artificial neural networks to real neurons? Several approaches are possible, at varying levels of neural detail.

Task information consistency. At the coarsest level, a useful metric of model similarity to a system is the consistency of patterns of explicitly decoda-
ble information available to support potential behavioral tasks. In this approach, populations of ‘neurons’ from a model and populations of recorded 
neurons are analyzed with identical decoding methods on a battery of high-level tasks (for example, object recognition, face identification and so forth). 
While not required, it is useful to use simple decoders such as linear classifiers or linear regressors1,32,63,64, as these embody hypothetical downstream 
decoding circuits65,66. This procedure generates a pattern of response choices for both the model and the neural population. These patterns are then 
compared to each other either at a coarse grain (for example, via accuracy levels for each task32) or a fine grain (stimulus-by-stimulus response consist-
ency). We note that this approach naturally connects to the linkage between neuronal populations and behavior32, as both models and neurons can be 
compared to behavioral measurements from either in animal or humans subjects. Both the neural area thought be most directly connected to behavior 
(for example, IT in the visual case) and the computational model of this area should exhibit high consistency with those behavioral patterns32.

Population representational similarity. Another population-level metric is representational similarity analysis29,35, in which the two representations (that of the 
real neurons and that of the model) are characterized by their pairwise stimulus correlation matrix (Fig. 2d). For a given set of stimuli, this matrix describes 
how far apart a representation ‘thinks’ each pair of stimuli are. These distance matrices are then compared for similarity: the model is judged to be similar to 
the neural representation if it treats stimuli pairs as close to (or far from) each other whenever the real neural population representation also does so.

Single-unit response predictivity. A finer grained mapping of models to neurons is that of linear neural response predictivity of single units33. This idea is 
best understood via a simple thought experiment: imagine one had measurements from all neurons in a given brain area in two animals: a source animal 
and a target animal. How would one map the neurons in the source to neurons in the target? In many brain areas (such as, for example, V4 or IT), there 
might not be an exact one-to-one mapping of units between the animals. However, it is reasonable to suppose that the two animals’ areas are the same (or 
very similar) up to linear transform—for example, that units in the target animal are approximately linear combinations of (a small number of) units in the 
source animal. In engineering terms, the animals would be said to be ‘equivalent bases’ for sensory representation. (If the mapping had to be nonlinear, 
it would call into question whether the two areas were the same across animals to begin with.) Making the mapping would, in effect, be the problem of 
identifying the correct linear combinations. The same idea can be used to map units in a model layer to neurons in a brain area. Specifically, each empiri-
cally measured neuron is treated as the target of linear regression from units in the model layer. The goal is find linear combinations of model units that 
together produce a ‘synthetic neuron’ that will reliably have the same response patterns as the original target real neuron: find c i ni , { , , }∈ …1  such that

 
r x r x c m x

i
i i( ) ( ) ( )≈ = ∑synth

where r(x) is the response of neuron r to stimulus x, and mi(x) is the response of the i-th model unit (in some fixed model layer). Accuracy of rsynth is 
then measured as its explained variance (R2) for r on new stimuli not used to identify the coefficients ci. Ideally, the number of model source units i 
that have nonzero weights ci would be approximately the same as would be found empirically when attempting to map the neurons in one animal to 
those in same brain area for a different animal.
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the number of sensory areas (model layers) and the number of  
neurons in each area.

Early models of visual cortex in context
A number of approaches have been taken to identify HCNN param-
eters that best match biological systems.

Hand-designing parameters via Hubel and Wiesel theory. Beginning 
in the 1970s, before the HCNN concept was fully articulated, modelers  
started tackling lower cortical areas such as V1, where neurons 
might be explicable through comparatively shallow networks. Hubel 
and Wiesel’s empirical observations suggested that neurons in V1 
resemble Gabor wavelet filters, with different neurons corresponding  
to edges of different frequencies and orientations10,19. Indeed, early 
computational models using hand-designed Gabor filter banks as 
convolution weights achieved some success in explaining V1 neural 
responses20. Later it was realized that models could be substantially 
improved using nonlinearities such as thresholding, normaliza-
tion and gain control5,21, helping motivate the HCNN class in the 
first place. Similar ideas have been proposed for modeling primary  
auditory cortex22.

Learning parameters via efficient coding constraints. The work of 
Barlow, Olshausen and others introduced another way of determining 
filter parameters23,24. Filters were optimized to minimize the number 
of units activated by any given stimulus while still retaining the abil-
ity to reconstruct the original input. Such ‘sparse’ efficient codings 
naturally learn Gabor-wavelet-like filters from natural image data, 
without having to build those patterns in by hand.

Fitting networks to neural data. Another natural approach begun 
in the mid-1990s was to bring neuroscience data directly to bear on 
model parameter choice. The idea was to collect response data to 
various stimuli for neurons in a brain area of interest and then use 
statistical fitting techniques to find model parameters that reproduce 
the observed stimulus–response relationship. This strategy had some 
success fitting shallow networks to visual area V1, auditory area A1 
and somatosensory area S1 (reviewed in ref. 25).

Difficulties with deeper networks. Given successful shallow convo-
lutional models of early cortical areas, perhaps deeper models would 
shed light on downstream sensory areas. However, the deeper models 
needed to model such higher areas would have many more parameters 
than V1-like models. How should these parameters be chosen?

The outputs on which higher layers operate are challenging to visu-
alize, making it difficult to generalize the hand-designed approach 
to deeper networks. Similarly, while some progress has been made 
in extending efficient coding beyond one layer26, these approaches 
also have not yielded effective deeper networks. Multi-layer HMAX  
networks were created by choosing parameters roughly to match 
known biological constraints12,13. HMAX networks had some success 
reproducing high-level empirical observations, such as the tolerance 
ranges of inferior temporal (IT) cortex neurons12,27 and the tradeoff 
between single-unit selectivity and tolerance28.

However, by the mid-2000s, it had become clear that these 
approaches were all having trouble extending to higher cortical areas 
such as V4 and IT. For example, HMAX models failed to match pat-
terns of IT population activity on batteries of visual images29, while 
multilayered neural networks fit to neural data in V4 and IT ended 
up overfitting the training data and predicting comparatively small 
amounts of explained variance on novel testing images8.

One plausible reason for this lack of success was that the largely 
feedforward neural networks being explored were too limited to 
capture the data efficiently. Perhaps more sophisticated network 
architectures, using feedback30 or millisecond-scale spike timing31, 
would be required. A second possibility was that failure arose from 
not having enough neural data to fit the model parameters. Single-
unit physiology approaches8 or whole-brain functional MRI29 could 
measure responses to perhaps 1,000 independent stimuli, while array  
electrophysiology32 could obtain responses to ~10,000 stimuli.  
In hindsight, the amount of neural data available to constrain such 
networks was several orders of magnitude too little.

A new way forward: goal-driven networks as neural models
The goal-driven approach is inspired by the idea that, whatever param-
eters are used, a neural network will have to be effective at solving  
the behavioral tasks the sensory system supports to be a correct model 
of a given sensory system. The idea of this approach is to first optimize 
network parameters for performance on an ethologically relevant 
task, and then, once network parameters have been fixed, to compare  
networks to neural data. This approach avoids the severe data limi-
tation of pure neural fitting, as collecting (for example) millions of 
human-labeled images containing many hard real-world cases of 
object recognition is far easier than obtaining comparable neural 
data. The key question becomes: do such top-down goals strongly 
constrain biological structure? Will performance optimization 
imposed at the outputs of a network be sufficient to cause hidden 
layers in the network to behave like real neurons in, for example, 
V1, V4 or IT? A series of recent results has shown that this might  
indeed be the case.

The technological bases of the goal-driven approach are recent 
improvements in optimizing neural networks performance for arti-
ficial intelligence tasks. In this section, we discuss how these tools 
have led to better neural models; in the next, we discuss the technical 
innovations underlying those tools.

Top hidden layers of categorization-optimized HCNNs predict 
IT neuronal responses. High-throughput computational experi-
ments evaluating thousands of HCNN models on task performance 
and neural-predictivity metrics revealed a key correlation: archi-
tectures that perform better on high-level object recognition tasks 
also better predict cortical spiking data33,34 (Fig. 2a). Pushing this 
idea further by using recent advances from machine learning led to 
the discovery of hierarchical neural network models that achieved 
near-human-level performance level on challenging object categori-
zation tasks. It turned out that the top hidden layers of these models 
were the first quantitatively accurate image-computable model of 
spiking responses in IT cortex, the highest-level area in the ventral 
hierarchy18,33,34 (Fig. 2b,c). Similar models have also been shown to 
predict population aggregate responses in functional MRI data from  
human IT (Fig. 2d)35,36.

These results are not trivially explained merely by any signal reflect-
ing object category identity being able to predict IT responses. In fact, at 
the single neuron level, IT neural responses are largely not categorical,  
and ideal-observer models with perfect access to category and iden-
tity information are far less accurate IT models than goal-driven 
HCNNs33 (Fig. 2a,c). Being a true image-computable neural network 
model appears critical for obtaining high levels of neural predictivity. 
In other words: combining two general biological constraints—the 
behavioral constraint of the object recognition task and the architec-
tural constraint imposed by the HCNN model class—leads to greatly 
improved models of multiple layers of the visual sensory cascade.
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Though the top hidden layers of these goal-driven models end up 
being predictive of IT cortex data, they were not explicitly tuned to 
do so; indeed, they were not exposed to neural data at all during the 
training procedure. Models thus succeeded in generalizing in two 
ways. First, the models were trained for category recognition using 
real-world photographs of objects in one set of semantic catego-
ries, but were tested against neurons on a completely distinct set of  
synthetically created images containing objects whose semantic cat-
egories were entirely non-overlapping with that used in training. 
Second, the objective function being used to train the network was 

not to fit neural data, but instead the downstream behavioral goal 
(for example, categorization). Model parameters were independently 
selected to optimize categorization performance, and were compared 
with neural data only after all intermediate parameters—for example, 
nonlinear model layers—had already been fixed.

Stated another way, within the class of HCNNs, there appear to be 
comparatively few qualitatively distinct, efficiently learnable solutions 
to high-variation object categorization tasks, and perhaps the brain is 
forced over evolutionary and developmental timescales to pick such a 
solution. To test this hypothesis it would be useful to identify non-HCNN  

b

HCNN top
hidden layer

response
prediction

IT neural
response

Test images (sorted by category)

IT site 56

a

r =
 0.87 ± 0.15

HCNN m
odels

0.6 1.0

50

0

IT
 s

in
gl

e-
si

te
 n

eu
ra

l p
re

di
ct

iv
ity

(%
 e

xp
la

in
ed

 v
ar

ia
nc

e)

HMO
(top hidden

layer)

V2-like

HMAX

PLOS09

SIFT

V1-likePixels
Category

ideal
observer

Categorization performance
(balanced accuracy)

d
HCNN modelHuman IT (fMRI)

A
ni

m
at

e H
um

an
N

ot
 h

um
an

B
od

y
F

ac
e

B
od

y
F

ac
e

N
at

ur
al

A
rt

ifi
ci

al

In
an

im
at

e

�A = 0.38

1 2 3 4
1

2 3 4

c
Monkey V4
(n = 128)

Monkey IT
(n = 168)

Ideal
observers

Control
models

HCNN
layers

Control
models

Ideal
observers

HCNN
layers

P
ix

el
s

V
1-

lik
e

C
at

eg
or

y
A

ll 
va

ria
bl

es

P
LO

S
09

H
M

A
X

V
2-

Li
ke

S
IF

T P
ix

el
s

V
1-

Li
ke

P
LO

S
09

H
M

A
X

V
2-

lik
e

S
IF

T

0

50

0

50

S
in

gl
e-

si
te

 n
eu

ra
l p

re
di

ct
iv

ity
(%

 e
xp

la
in

ed
 v

ar
ia

nc
e)

**********************

e

0

0.2

0.4

0

0.2

0.4

Human V1–V3 Human IT

R
D

M
 v

ox
el

 c
or

re
la

tio
n

(K
en

da
ll’

s 
� A

)

S
co

re
s

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

Convolutional Fully connected

************* ****************

SVM

Geo
m

et
ry

-

su
pe

rv
ise

d

****

Figure 2  Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve 
object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance 
(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-
site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate 
70–170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such 
models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls 
and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that 
produces a specific HCNN model33. PLOS09, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response 
(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test 
images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image 
transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each  
test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.  
(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted 
units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last 
hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates 
low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct. 
Values range from 0 to 1. (e) RDM similarity, measured with Kendall’s τA, between HCNN model layer features and human V1–V3 (left) or human IT 
(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by 
bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a–c adapted 
from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.
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models that, when optimized for categorization, achieved high  
performance. The hypothesis predicts that any such models would 
fail to predict neural response data.

Intermediate and lower layers predict V4 and V1 responses
In addition to higher model layers mapping to IT, intermediate layers 
of these same HCNN models turn out to be state-of-the-art predictors 
of neural responses in V4 cortex, an intermediate visual area that is the 
main cortical input to IT33 (Fig. 2c). While the fit to IT cortex peaks 
in the highest hidden model layers, the fit to V4 peaks in the middle 
layers. In fact, these ‘accidental’ V4-like layers are significantly more 
predictive of V4 responses than models built from classical intuitions 
of what the area might be doing (for example, edge conjunction or 
curvature representation37). Continuing this trend, the lowest layers of 
goal-driven HCNN models naturally contain a Gabor-wavelet-like acti-
vation pattern. Moreover, these lower layers provide effective models 
of voxel responses in V1–V3 voxel data (Fig. 2e)35,36. Top-down con-
straints are thus able to reach all the way down the ventral hierarchy.

A common assumption in visual neuroscience is that understanding 
tuning curves in lower cortical areas (for example, edge conjunctions  
in V2 (ref. 38) or curvature in V4 (ref. 39)) is a necessary precur-
sor to explaining higher visual areas. Results with goal-driven deep 
HCNNs show that top-down constraints can yield quantitatively 
accurate models of intermediate areas even when descriptive bottom- 
up primitives have not been identified (see Box 3).

HCNN layers as generative models of cortical areas. Unlike previ-
ous modeling approaches that fit single nonlinear models for each 
empirically measured neuron and then describe the distributions of 
parameters that were found6, the performance-based approach gen-
erates a single model for all neurons simultaneously. Consequently, 
layers of the deep HCNNs are generative models for correspond-
ing cortical areas, from which large numbers of (for example)  
IT-, V4- or V1-like units can be sampled. Given that the neurons 
used to evaluate model correctness were chosen by random electrode 
sampling, it is likely that any future neurons sampled from the same 

Box 4  Gradient backpropagation 

The basic idea of the gradient backpropagation algorithm is simple:
1. Formulate the task of interest as a loss function to be minimized—for example, categorization error. The loss function should be piecewise  
differentiable with respect to both the inputs (for example, images) and the model parameters.
2. Initialize the model parameters either at random or through some well-informed initial guess14.
3. For each input training sample, compute the derivative of the error function with respect to the filter parameters, and sum these values over  
the input data.
4. Update network parameters by gradient descent—that is, by moving each parameter a small amount in the direction opposite to the error gradient 
for that parameter.
5. Repeat steps 3 and 4 until either the training error converges or, if overfitting is a concern, some ‘early stopping’ criterion is met14.
The key insight that makes this procedure relatively efficient for feedforward networks is that—simply by applying the chain rule from basic  
calculus—the derivatives of the error with respect to filter values in a given layer can be efficiently computed from those in the layer just above42. 
Derivative computations thus start at the top layer and then propagate backwards through the network down to the first layers.
Another important technical innovation enabling large-scale backpropagation was stochastic gradient descent (SGD)42. SGD involves breaking  
training data into small, randomly chosen batches. Gradient descent is done on each batch in sequence until the training data are exhausted,  
at which point the procedure can begin again, usually on newly chosen random batches. SGD enables backpropagation on much larger data sets  
than previously contemplated and usually converges to a stable solution, though the statistical theory guaranteeing such convergence is not  
well developed.

Box 3  The meaning of ‘understanding’ in a complex sensory system 

What does it mean to understand a complex neural system67? In this Perspective, we have suggested that successful models are image-computable, 
mappable and quantitatively predictive. But do models that meet these criteria necessarily represent understanding? It can be argued that deep  
neural networks are black boxes that give limited conceptual insight into the neural systems they aim to explain. Indeed, the very fact that deep HCNNs 
are able to predict the internal responses of a highly complex system performing a very nonlinear task suggests that, unlike earlier toy models, these  
deeper models will be more difficult to analyze than earlier models. There may be a natural tradeoff between model correctness and understandability.

Optimal stimulus and perturbation analysis. However, one of the key advantages of an image-computable model is that it can be analyzed in detail at low 
cost, making high-throughput ‘virtual electrophysiology’ possible. Recent techniques that optimize inputs either to match the statistics of target images  
or to maximize activation of a single output unit have produced impressive results in texture generation, image style matching and optimal stimulus  
synthesis (ref. 68 and Mordvintsev, A., Tyka, M. & Olah, C., http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html, 
2015). These techniques could be used to identify the featural drivers of individual neurons, using the models’ efficiency of scale to reduce a huge 
stimulus space to a set small enough to measure using realistic experimental procedures69. Inspired by causal intervention experiments70, predictions  
for causal relationships between neural responses and behavior could be obtained by perturbing units within the model, even optimizing stimuli and 
perturbation patterns to achieve the most effective behavioral changes.

A concrete example of traversing Marr’s levels of analysis. Goal-driven models yield higher level insight as well. That functional constraints can produce 
neurally predictive models is reminiscent of earlier work, including efficient coding hypotheses23,24. In both approaches, a driving concept—expressed 
as an objective function for optimization—explains why parameters are as they are. Unlike efficient coding, goal-driven HCNNs derive their objective 
function from behaviors that organisms are known to perform, rather than more abstract concepts, such as sparsity, whose ecological relevance is  
unclear. In this sense, the current work is more similar in spirit to Marr’s levels of analysis71, investigating how a system’s computational-level goals  
influence its algorithmic and implementation level mechanisms. This approach is also related to neuroethology, where the natural behavior of an  
organism is studied to gain insight into underlying neural mechanisms72.
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areas will be equally well predicted, without having to update model 
parameters or train any new nonlinear functions.

Application to auditory cortex. A natural idea is to apply goal-based 
HCNN modeling to sensory domains that are less well understood 
than vision. The most obvious candidate for this is audition, where 
a clear path forward involves producing HCNN models whose  
top layers are optimized to solve auditory tasks such as speech  
recognition, speaker identification, natural sound identification  
and so on. An intriguing possibility is that intermediate layers  
of such models may reveal previously unknown structures in non-
primary auditory cortex. Initial results suggest that this approach 
holds promise40.

Factors leading to the improvement of HCNNs
Taking initial inspiration from neuroscience, HCNNs have become a 
core tool in machine learning. HCNNs have been successful on many 
tasks, including image categorization, face identification, localization, 
action recognition, depth estimation and a variety of other visual 
tasks41. Related recurrent versions of deep neural networks have been 
used to make strides in speech recognition. Here we discuss some of 
the technical advances that have led to this recent progress.

Hardware-accelerated stochastic error backpropagation for 
optimizing filter parameters
In supervised learning of a task (for example, car detection in images), 
one chooses a set of training data, containing both sample inputs (for 
example. images of cars and non-cars) and labels describing desired 
results for each input (for example, image category labels, such as “car” 
or “dog”). Learning algorithms are then used to optimize the parame-
ter settings of the network so that output layers yield the desired labels 
on the training data14. A powerful algorithm for supervised learn-
ing of filter parameters from supervised data has been in existence 
for several decades: error gradient descent by backpropagation14,42  
(see Box 4). However, until recently, backpropagation has been com-
putationally impractical at large scales on massive data sets. The recent 
advent of graphical processing unit (GPU)-accelerated programming 
has been a great boon because backpropagation computations largely 
involve either simple pointwise operations or parallel matrix dot-prod-
ucts15,33,43. GPUs, which are more neuromorphic than von Neumann 
CPU architectures, are especially well suited to these operations,  

routinely yielding speed increases of tenfold or more15. Further 
advances in neuromorphic computing could accelerate this trend44.

Automated learning procedures for architectural parameters
Discrete architectural parameters (for example, number of layers) 
cannot easily be optimized by error backpropagation. However, 
discrete parameters are critical to final network performance15,18. 
Traditionally, these parameters had been chosen by hand, empiri-
cally testing various combinations one at a time until improvements  
were observed. More recently, procedures such as Gaussian process 
optimization and genetic algorithms have been deployed to learn  
better architectural parameters automatically15,45,46.

Large web-enabled labeled data sets
Another important factor in recent advances is the advent of large 
labeled data sets. In the visual domain, early data sets often consisted 
of hundreds of images in hundreds of categories47. It was eventu-
ally realized that such data sets were neither large nor varied enough 
to provide sufficient training data to constrain the computational 
architecture15,48. A major advance was the release of the ImageNet 
data set, which contains tens of millions of images in thousands of 
categories, curated from the Internet by crowd-sourcing49. Taking 
advantage of these large data sets required the efficient hardware-
accelerated algorithms described above. Once these were in place, 
much deeper neural networks could be trained. A rough rule of thumb 
is that the number of training samples for backpropagation should be 
10 times the number of network parameters. Given that the number of 
parameters in a modern deep network far exceeds 100,000, the need 
for millions of training samples becomes evident, at least for current 
parameter learning strategies. (The neural learning algorithms used 
by the brain are probably significantly more efficient with labeled data 
than current computational methods for training HCNNs, and may 
not be subject to the ‘10×’ heuristic.)

A concomitance of small tweaks to architecture class and 
training methods
A number of other small changes in neural network architecture 
and training helped improve performance. One especially relevant 
modification replaced continuously differentiable sigmoid activation 
functions with half-rectified thresholds43. Because these activation 
functions have constant or zero derivative almost everywhere, they 
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Figure 3  The components of goal-driven modeling. The large circle 
represents an architectural model class; each point in the space is a full 
model (examples at right); inner circles represent subspaces of the full 
model class containing models of a given number of layers. Goal-driven 
models are built by using learning algorithms (dotted black arrows) that 
drive systems along trajectories in the model class (solid colored lines) 
to discover especially optimal models. Each goal can be thought of as 
corresponding to a basin of attraction within the model class (thick black 
contours) containing parameters that are especially good for solving that 
goal. Computational results have shown that tasks put a strong constraint 
on model parameter settings, meaning that the set of optimal parameters 
for any given task is very small compared to the original space. These 
goal-driven models can then be evaluated for how predictive they are 
of the response properties of neurons in brain areas that are thought to 
underlie behavior in a given task domain. For example, the units of a 
model optimized for word recognition could be compared to response 
properties in the primary, belt and parabelt regions of auditory cortex40.  
Models can also be compared to each other to determine to what 
extent different types of tasks lead to shared neural structures. Various 
component rules (supervised, unsupervised or semi-supervised) can also 
be studied to determine how they might lead to different dynamics during 
postnatal development or expertise learning (dashed green paths).
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suffer less from the so-called vanishing-gradients problem, in which 
error gradients in early layers become too small to optimize effectively. 
A second type of improvement was the introduction of regularization 
methods that inject noise during backpropagation into the network to 
prevent the learning of fragile, overfit weight patterns43.

The unreasonable effectiveness of engineering
Recent improvements represent the accretion of a number of critical 
engineering improvements (for example, refs. 50,51). These changes 
may not signal major conceptual breakthroughs beyond the original 
HCNN and backpropagation concepts described decades ago, but 
they nonetheless led to enormous improvement in final results. Large 
data sets and careful engineering have been much more important 
than was originally anticipated52.

Going forward: potentials and limitations
Goal-driven deep neural network models are built from three basic 
components (Fig. 3):

  �a model architecture class from which the system is built, formal-
izing knowledge about the brain’s anatomical and functional  
connectivity;

  �a behavioral goal that the system must accomplish, such as object 
categorization; and

  �a learning rule that optimizes parameters within the model class to 
achieve the behavioral goal.

The results above demonstrate how these three components can be 
assembled to make detailed computational models that yield test-
able predictions about neural data, significantly surpassing prior 
sensory cortical models. Future progress will mean, in part, better  
understanding each of these three components—as well as their  
limitations (see Box 5).

Improving architecture class
Continued success in using computational models to understand sen-
sory cortex will involve more detailed and explicit mapping between 
model layers and cortical areas. HCNN operations such as template 
matching and pooling are neurally plausible, but understanding 
whether and how the parameterizations used in HCNNs actually con-
nect to real cortical microcircuits is far from obvious. Similarly, while 
the hierarchy of HCNN model layers appears to generally correspond 
with the overall order of observed ventral cortical areas, whether the 
model-layer/brain-area match is one-to-one (or close to it) is far 
from fully understood. Recent high-performing computer vision 

•

•

•

networks have greatly increased the number of layers, sometimes to 
20 or more50. Evaluating whether these very deep networks are better 
explanations of neural data will be of importance, as deviations from 
neural fit would suggest that the architectural choices are different 
from those in the brain. More generally, one can ask, within the class 
of HCNNs, which architectures, when optimized for categorization 
performance, best fit the ventral steam neural response data? The 
results above argue that this could be a new way to infer the architec-
tures in the adult ventral stream.

Such top-down, performance-driven approaches should of 
course be coupled with state-of-the-art experimental techniques 
such as two-photon microscopy, optogenetics, electron microscopy  
reconstruction and other tracing techniques that aim to narrow the 
class of architectures more directly. Better empirical understanding 
at the neural circuit level could allow a narrowing in the class of  
biologically relevant HCNNs, ruling out certain architectures or 
making informed initial guesses about filter parameters. Models 
would then need to learn fewer parameters to achieve equal or better  
neural predictivity.

In both vision and audition, model architecture class could also be 
improved by building more biologically realistic sensor front-ends into 
early layers, using known results about subcortical structures53. At the 
opposite end of the scale spectrum, there are large-scale spatial inho-
mogeneities in higher cortical areas (for example, face patches)4. In the 
lower layers of HCNNs, there is an obvious mapping onto the cortical 
surface via retinotopic maps, but this relationship is less clear in higher 
layers. Understanding how multidimensional deep network output 
may map to two-dimensional cortical sheets, and the implications of 
this for functional organization, are important open problems.

Improving goal and training-set understanding
The choice of goal and training set has significantly influenced model 
development, with high-variation data sets exposing the true hetero-
geneity within real-world categories33,48,49. It seems likely that this 
data-driven trend will continue52. A key recent result is that HCNNs 
trained for one task (for example, ImageNet classification) general-
ize to many other visual tasks quite different from the one on which 
they were originally trained41. If many relevant tasks come along ‘for 
free’ with categorization, which tasks do not? An especially important 
open challenge is finding tasks that are not solved by categorization 
optimization but rather require direct independent optimization, and 
then testing models optimized for these tasks to see if they better 
explain ventral stream neural data. Developing rich new labeled data 
sets will be critical to this goal. Understanding how HCNNs systems 
for various sensory tasks relate to each other, in terms of shared or 

Box 5  Understanding adversarial optimization effects 

An intriguing recent development in the exploration of HCNNs is the discovery of adversarial images: normal photographs that are subtly modified in 
ways that are undetectable to humans but that cause networks to incorrectly detect arbitrary objects in the modified image73,74. In effect, adversarial 
images demonstrate that existing HCNNs may be susceptible to qualitatively different types of illusions than those that fool humans. These images are 
created through adversarial optimization, a process in which the pixels of the original image are optimally modified so as to produce the largest changes 
in the network’s final category-detection layer, but with the least disturbance at the pixel level. Creating such images, which may not naturally arise in 
the physical world, requires complete access to the network’s internal parameters.
Thinking along the lines of three components of goal-driven modeling discussed above (and see Fig. 3), several possibilities for explaining adversarial 
examples include (i) that similar effects would be replicable in humans—for example, the creation of idiosyncratic images that fool one human but  
are correctly perceived by others—if experiments had access to the detailed microcircuitry of that individual brain and could run an adversarial  
optimization algorithm on it; (ii) that optimization for a categorization goal is brittle, but if richer and more robust optimization goal(s) were used, the 
effects would disappear; or (iii) that adversarial examples expose a fundamental architectural flaw in HCNNs as brain models, and only by incorporating 
other network structures (for example, recurrence) will the adversarial examples be overcome. Regardless of which (if any) if these is most correct,  
understanding adversarial optimization effects would seem to be a critical component of better understanding HCNNs themselves, especially as  
putative models of the brain.
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divergent architectures, would be of interest, both within a sensory 
domain54, as well as across domains (for example, between vision and 
audition; see Fig. 3).

Improving learning rule understanding
While it is valuable that supervised learning creates working models 
that are a remarkably good fit to real perceptual systems, it is physi-
ologically unlikely that cortex is implementing exact backpropagation. 
A core inconsistency between current deep-learning approaches and 
real biological learning is that training effective HCNNs requires very 
large numbers of high-level semantic labels. True biological postnatal  
learning in humans, higher primates and other animals may use 
large amounts of unsupervised data, but is unlikely to require 
such large amounts of externally labeled supervision. Discovering 
a biologically realistic unsupervised or semi-supervised learning  
algorithm55–57 that could produce high levels of performance 
and neural predictivity would be of interest, from both artificial  
intelligence and neuroscience viewpoints.

Beyond sensory systems and feedforward networks
Largely feedforward HCNNs cannot provide a full account of dynamics 
in brain systems that store extensible state, including any that involve 
working memory, since the dynamics of a feedforward network will 
converge to the same state independent of input history. However, 
there is a growing body of literature connecting recurrent neural 
networks to neural phenomena in attention, decision making and 
motor program generation58. Models that combine rich sensory input 
systems, as modeled by deep neural networks, with these recurrent 
networks could provide a fruitful avenue for exploring more sophis-
ticated cognitive behaviors beyond simple categorization or binary 
decision making, breaking out of the pure ‘representation’ framework 
in which sensory models are often cast. This is especially interesting 
for cases in which there is a complex loop between behavioral out-
put and input stimulus—for example, when modeling exploration of 
an agent over long time scales in a complex sensory environment59. 
Intriguing recent results from reinforcement learning60 have shown 
how powerful in solving strategy-learning problems deep neural net-
work techniques may be. Mapping these to ideas in the neuroscience 
of the interface between ventral visual cortex and, for example, parietal 
cortex or the hippocampus will be of great interest61,62.

Conclusion
In sum, deep hierarchical neural networks are beginning to transform 
neuroscientists’ ability to produce quantitatively accurate computational  
models of the sensory systems, especially in higher cortical areas 
where neural response properties had previously been enigmatic. 
Such models have already achieved several notable results, explaining 
multiple lines of neuroscience data in both humans and monkeys33–36. 
However, like any scientific advance of importance, these ideas open 
up as many new questions as they answer. There is much exciting and 
challenging work to be done, requiring the continued rich interaction 
between neuroscience, computer science and cognitive science.
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