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ScienceDirect
Propelled by advances in biologically inspired computer vision

and artificial intelligence, the past five years have seen

significant progress in using deep neural networks to model

response patterns of neurons in visual cortex. In this paper, we

briefly review this progress and then discuss eight key ‘open

questions’ that we believe will drive research in computational

models of sensory systems over the next five years, both in

visual cortex and beyond.
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Any scientific development of long-term value opens up

as many new questions as it answers. This is certainly the

case with recent progress in building deep neural network

models of visual cortex. In this piece, our goal is to briefly

describe these recent advances, and to outline what we

consider to be the most interesting open problems in

cortical modeling, both in vision and beyond. We focus is

on questions that will require both cutting-edge algorith-

mic developments as well as next-generation neurosci-

ence and cognitive science experiments.

Brief review of recent progress
Starting with the seminal ideas of Hubel and Wiesel, work

in visual systems neuroscience over the past 60 years has

shown that the ventral visual stream generates invariant

object recognition behavior via a hierarchically-organized

series of cortical areas that encode object properties with

increasing selectivity and tolerance [1�,2–5]. Early visual

areas, such as V1 cortex, capture low-level features such as

edges and center-surround patterns [6�,7]. In contrast,

neural population responses in the highest ventral visual

areas, inferior temporal (IT) cortex, can be used to decode
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object category, robust to significant variations present in

natural images [8–10]. The featural content of mid-level

visual areas such as V2, V3, and V4 is less well understood,

but these areas appear to contain intermediate computa-

tions between simple edges and complex objects, along a

pipeline of increasing receptive field sizes [1�,11–18].

Many of these observations can be captured mathemati-

cally via class of computational architectures known as

Hierarchical Convolutional Neural Networks (HCNNs),

a generalization of Hubel and Wiesel’s simple and com-

plex cells that has been developed over the past 30 years

[19��,20�]. HCNN models are composed of several reti-

notopic layers combined in series. Each layer is very

simple, but together they produce a deep, complex trans-

formation of the input data—in theory, like the transfor-

mation produced in the ventral stream. However,

mapping a single HCNN model to ventral stream neural

data has proven extremely challenging [12], in part be-

cause subtle parameter changes (e.g. number of layers,

local receptive field sizes, &c) can dramatically affect a

model’s match to neural data [21,22]. Recent work in

visual cortex seeks to go beyond this powerful but broad-

stroke understanding to identify concrete predictive

models of ventral cortex, and then use these models to

gain insight inaccessible without large-scale computation-

al precision.

A key aspect of this approach has been performance-based
optimization, in which the parameters of a large multi-

layer neural networks are chosen to optimize the net-

works’ performance on a high-level, ecologically valid

visual task [23�]. Leveraging computer vision and ma-

chine learning techniques, together with large amounts of

real-world labelled images used as supervised training

data [24��,25,26�], HCNNs have been produced that

achieve near-human-level performance on challenging

object categorization tasks [27].

Intriguingly, even though these networks are not directly

optimized to fit neural data, their top hidden layers are

nonetheless highly predictive of single-site neural

responses as well population-level representations in IT

cortex both in electrophysiological [23�,28], and fMRI data

[29�,30]. Specifically, model units from the highest hidden

layers of these performance-optimized HCNN can be

linearly combined to produce synthetic ‘neurons’ that

predict the image-by-image response patterns of sites in

IT cortex. Moreover, the population of these synthetic

neurons closely matches the representational dissimilarity
www.sciencedirect.com
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matrices (RDMs, [31]) of the macaque and human IT

populations. These deep, performance-optimized neural

networks have thus yielded the first quantitatively accu-

rate, predictive model of the IT population response.

Moreover, high-throughput computational experiments

evaluating thousands of HCNN models on both task

performance and neural-predictivity metrics, have found

a strong correlation between performance of high-level

object recognition tasks and ability to explain IT cortical

spiking data [23�]. The predictive power of these models

is driven not just by categorization performance alone, as

ideal observer models with perfect access to object iden-

tity do not themselves predict IT neural response pat-

terns nearly as well as the hierarchical neural network

units [23�].

Critically, these HCNN models are mappable not only to

IT, but also to other levels of the ventral visual stream.

Lower model layer filter weights resemble Gabor wave-

lets and are effective models of fMRI voxel responses in

V1 voxel data [29�,30]. Along the same lines, intermediate

HCNN layers are predictive of neural responses in V4

cortex [23�]. In other words: combining two general

biological constraints—the behavioral constraint of rec-

ognition performance, and the architectural constraint

imposed by the HCNN model class—leads to greatly

improved models of multiple layers of the visual sensory

cascade. An additional benefit of this approach is that each

layer of the HCNN is a basis set for its corresponding

cortical area, from which large numbers of IT-, V4- or V1-

like units can be generated. A common assumption in

visual neuroscience is that understanding the qualitative

structure of tuning curves in lower cortical areas (e.g.

gabor conjunctions in V2 or curvature in V4 [32]) is a

necessary precursor to explaining higher visual cortex.

These recent results show that higher-level constraints

can yield quantitative models even when bottom-up

primitives have not yet been identified.

The mapping between neural networks and cortical neu-

ral responses is still far from perfect. However, these

recent results are encouraging, and they advance the

understanding of the ventral stream in at least two new

ways. First, the predictive accuracy of these models

suggests that the principles of cortical processing may

be best described at the level of architectural statistics

(rather than precise wiring patterns), learning rules (rather

than descriptors of tuning curves), and ethological task

goals (rather than information transmission). Second,

because models derived from this approach are both

accurately predictive and generative, they act as hypoth-

esis generators that can be richly interrogated to explore

key open questions and enable the rational design of

neuroscience experiments to answer those questions.

Below we list eight exciting open questions that are

now approachable from this new vantage point.
www.sciencedirect.com 
Why is IT cortex heterogenous at large spatial
scales?
IT cortex is not a single monolithic computational mass

in which output features are randomly intermixed across

the cortical surface, but instead is likely to contain

multiple retinotopic areas, with posterior IT, central

IT, and anterior IT areas performing potentially differ-

ent computations [1�]. It is also now known that spe-

cialized face, place, body, and color-preferring regions at

the multiple-millimeter scale are found in each of these

IT areas [33–36]. Are these the only regions? If so, why

these and not others? How do the regions arise in the

first place? Understanding this heterogeneity with

computational models has two components: first, iden-

tifying whether and how the observed distributions of

unit selectivities arise, independently of their spatial

clustering; and second, explaining the observed spatial

clustering.

Existing HCNN models could likely be used to gener-

ate detailed predictions about the unit distributions. A

basic question is: to what extent are the existence of

apparently specialized populations of units (e.g. face-

selective units) strongly dependent on the semantic

content of the training data of the neural networks?

Will standard neural network model approaches yield

observed unit populations if trained on datasets with a

mix of semantic content close to that experienced by

humans during development (e.g. a large fraction of

faces)? How sensitive are unit selectivity distributions

to this semantic content?

The second question, about spatial clustering, will re-

quire a more substantial extension of the HCNN frame-

work, since those models make no specific predictions

about how their units are to be mapped to the two-

dimensional cortical sheet. It is possible that using a

simple self-organizing map approach [37] to cluster in

space units with similar feature tunings would explain a

large fraction of the spatial structure in IT. However,

there is some evidence that clustering may not be along

purely geometric or featural lines—for example, body-

preferring patches arise near face-preferring patches even

though there is no obvious geometric similarity between

these two categories [38]. If the known regions do not

emerge in these types of models, it will be important to

understand what additional principles are required to

build them. If they do, it will also be of interest to search

for new model-predicted regions that could subsequently

be confirmed or falsified using primate fMRI and electro-

physiolgy experiments.

Which visual properties are explicitly encoded
in intermediate ventral stream areas?
Intermediate visual areas such as V2 and V4 have

proven especially hard to understand because, unlike

V1 and IT, they are removed both from low-level image
Current Opinion in Neurobiology 2016, 37:114–120
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properties and from higher-level human semantic intui-

tion [32,39,40]. Because intermediate layers of compu-

tational models are predictive of these cortical areas,

performing high-throughput ‘virtual electrophysiology

to characterize the model’s internal structure should

yield insight into tuning curves in corresponding cortical

areas. One of the key advantages of an image-comput-

able model is that it can be analyzed in great detail at

low cost. It will be of great interest to perform high-

throughput ‘virtual electrophysiology’ on models to

determine what their intermediate units represent. Re-

cent progress in visualization techniques have allowed

for structures in intermediate layers to be explored.

Techniques that seek to optimize input images either

for matching the statistics of existing images or for the

activation of a unit (or units) within model higher layers

have been seen to produce impressive results in texture

generation, image style matching, and model explora-

tion [41�,42,43]. Versions of these techniques could

have useful application in neuroscience for efficiently

separating multiple candidate models, by optimizing for

stimuli that produce the largest difference between two

such models, even if, and perhaps most especially if,

those alternative models do not differ in simple concep-

tual ideas. Such techniques (inspired by [9,44]) could be

extremely helpful in reducing the huge stimulus space

to a set that would be small enough to measure neural

responses using existing experimental techniques.

Can models predict the perceptual
consequences of direct neural perturbations?
Computational models enable the efficient exploration of

the effects of perturbing unit activations in a highly

selective manner. In the short term, such an approach

could be used to make testable predictions of the behav-

ioral changes (e.g. in facial expression identification abili-

ty) that arise from inactivating/stimulating specific

subpopulations of units defined by cell type or function-

ality (e.g. high face-selectivity). Over the next 2–5 years,

it should be possible to combine computational models

with cutting-edge optical techniques in non-human pri-

mates [45,46] to help design highly targeted real-time

neural perturbation studies.

Is ‘linear readout’ a real model of downstream
neural decoding?
In the above work, it is often implicitly assumed that

behavior is generated from neural representations by

linear readout, for example, neurons in other downstream

brain areas (e.g. PFC, motor cortex, parietal cortex) using

the information in the high-level representational areas

(e.g. IT) by forming linear combinations of neurons from

those areas. In other words, linear classifiers are not

merely thought of as ‘information measurement’ devices,

but also as a concrete hypothesis for how multiple down-

stream brain areas could utilize the robust, explicit infor-

mation in a high-level representation for multiple task
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purposes [8,47,48]. Evaluating this hypothesis more thor-

oughly is important, involving a variety of questions,

including:

� To what extent is the hypothesis true? Are downstream

visual readouts really linear as [8] might suggest, or for

some tasks do they need to be (at least somewhat)

nonlinear? How important are temporal coding mech-

anisms in visual task readout?

� Building on [47], can we identify one or several

examples of these linear readouts in action, connecting

IT to some specific downstream area? What types

neurons, in which cortical layers, are involved in the

readout process?

� How are linear readouts learned, and over what

timescales do they form? For them to play the role

they are often assigned in the current models, such

readouts would have to form comparatively quickly,

with small amounts of on-line training data. Can the

process of fast learning be captured empirically? What

specific rules of learning are used? Are the classifier

weight learning rules implicated more like those using

in machine learning classifier algorithms, such as

Support Vector Machines (SVMs), or some simpler

procedure like linear discriminants [49]? If there really

are linear classifier learning algorithms running neural-

ly, do their weightings on input neurons get regularized

as they might in machine learning algorithms [50]—

that is, discouraged from having strong connections

from too many upstream neurons, beyond the

constraints imposed by biophysics alone? If so, what

type of sparsity priors are imposed by the regularization

used in the real brain?

� What are the default readouts that run automatically in a

typically inattentive or passive state? How is task-
switching accomplished, and how does this relate to

attentional state? Presumably the task attention of the

animal is deeply connected to switching between the

‘active’ readout at any given time. How is this

accomplished mechanistically? How would we even

identify the neural signature of ‘active’ readout?

How do feedforward discriminative networks
connect to top-down inference in generative
models?
The HCNN models of vision mentioned above are large-

ly discriminative, in that they model the flow of informa-

tion from bottom-to-top: information comes in to the

system along sensory input arrays (e.g. the retina) and

exits via outputs that indicate an attribute of the data

relative to an (often discrete) discrimination task (e.g.

recognizing a given category of object in the image).

However, the generative point of view is also relevant

and a potentially critical next step in sensory models.

In this view, there is an explicit process through which

high-level labels about the world (e.g. object identities,
www.sciencedirect.com
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relation locations and relationships) can be turned into

predictions about the low-level (pixel) description con-

sistent with those high-level labels. Generative models

are important because they naturally support a number of

key cognitive phenomena, such as inference, explaining

away, and imagination—and would be a natural source of

‘data’ for self-supervised learning procedures. They also

offer the potential of explaining the well-known, but

poorly understood role of cortico-cortical feedback con-

nections in the brain. Figuring out how to combine

bottom-up discriminative models with more top-down

generative models, and connect them both to the neuro-

science of visual perception in ambiguous or complex

images (like the ‘Dallenbach Cow’ [51]) would be a

significant step forward.

How is visual learning actually implemented in
the brain?
While recent work has begun to uncover how images are

encoded in adult IT cortex, very little is known about how

the IT representation arises in the first place. To what

extent does visual learning during development shape

high-level vision? Computational models—which, at

heart, are really the product of learning rules in ac-

tion—can help us think about these key questions in a

new way.

Three important questions associated with this are:

� What aspects of the visual system are evolved, vs.

developed, vs. learned? How do the learning rules

active during post-natal development differ from those

active in expertise learning in adulthood? Mapping

learning trajectories in models to developmental data

will help make predictions about these important

questions.

� What types of data are learning rules receiving? A

significant limitation of many of the most effective

existing learning rules for computational models—

such as error backpropagation for training categoriza-

tion in deep neural networks—is that they require

large amounts of high-level semantically labeled

training data. Over the next few years, an important

area of research will be the discovery of semi- or un-

supervised neural network learning algorithms that

blend features of existing machine-learning techni-

ques with constraints from neural data. An intriguing

possibility is that heavily supervised category-label

training could be replaced by optimization for

properties (e.g. position, size, and pose) that can be

more easily estimated from motion heuristics in

natural video.

� How are learning rules implemented at the circuit

level? Existing results suggest a number of cost-

function objectives that may be involved in perceptual

learning, including stimulus reconstruction goals,
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efficient-coding constraints [52�], and top-down super-

vised task prediction errors [53�]. These rule need to be

implemented as a (presumably recurrent) part of the

neural network that can be then used for tasks during

‘runtime’. By combining high-resolution neural tech-

niques such as calcium imaging and axonal tracing, it

may be possible to watch learning in action and use

these data to constrain an understand of how the

algorithmic rules underlying this learning are imple-

mented in neural circuits.

Can sensory systems beyond vision benefit
from performance-driven neural-network
approaches?
Recent work in vision suggests a more general hypothesis

about how to model sensory cortex: selecting biologically-

plausible neural networks for high performance on an

ecologically-relevant sensory task will yield a detailed

model of the actual cortical areas that underlie that task.

Since this idea has some traction in the ventral visual

stream, it is natural to ask whether it also yields insight in

other sensory domains.

Some initial recent work has found that HCNNs trained

to solve challenging high-variation word recognition tasks

are predictive of voxel patterns in auditory cortex [54].

These models are also able to differentiate auditory areas,

with lower model layers more predictive of inferior col-

liculus, intermediate layers more predictive of primary

auditory cortex, and higher layers of speech and music-

selective areas identified in recent imaging studies [55].

These results open up a variety of computational audition

questions, including:

� Detailed characterization of non-primary auditory
cortex. As with higher visual areas, models can be

used to make detailed testable predictions about

poorly-understood auditory cortex subregions, espe-

cially in relation to speech and natural sound

representations [55,56]. This problem could be

approached experimentally using both human fMRI/

eCOG and non-human primate electrophysiology

techniques.

� What auditory tasks best explain cortical differentia-
tion? Given the evolutionary history of audition, non-

speech tasks (e.g. environmental sound differentiation)

might be as important for driving auditory cortex

structure as speech. This question could be explored

by training networks on a variety of ecological auditory

tasks.

� How do audition-optimized architectures compare to
those optimized for vision? Are there deep but hidden

structural similarities between visual and auditory

cortex that arise from underlying similarities in

auditory and visual data? This fascinating question

could be attacked both from a purely algorithmic point
Current Opinion in Neurobiology 2016, 37:114–120
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of view, as well as by comparing auditory neural data to

ventral-stream data.

It will also be of interest to see if similar ideas can used in

other sensory domains. One promising idea would be to

model neural responses in rat barrel cortex through hier-

archical networks optimized for somatosensory tasks. It is

also an intriguing question whether the performance-

driven modeling approach will have utility for under-

standing evolutionarily older sensory systems, such as

olfaction, where key challenges will include framing

behavioral tasks and architecture classes in the first place.

How should working memory be included?
Beyond Sense-At-A-Glance
Largely feedforward models like HCNNs cannot provide a

full account of the dynamics of brain systems that store

extensible state – most notably, any brain area that involves

working memory, since the ‘dynamics’ of a feedforward

network will always converge to the same state indepen-

dent of input. However, in studying behavior downstream

of the sensory system, such as that arising from visual

working memory, having a computational stand-in for

the visual system to use as input to models of memory

areas would be of great use. Moreover, there is a growing

body of literature connecting recurrent neural networks to

neural phenomenon in attention, decision making and

motor program generation [57,58�,59]. Results from rein-

forcement learning [60�] have shown how powerful such

techniques may be in the realm of AI. Mapping these to

ideas in the neuroscience of the interface between ventral

visual cortex and (e.g.) parietal cortex or the hippocampus

will be of great interest [61,62]. Models that combine rich

sensory input systems, as modeled by deep neural net-

works, with these recurrent networks, could provide a

fruitful avenue for exploring more sophisticated cognitive

behaviors beyond simple categorization or binary decision

making, breaking out of the pure ‘representation’ frame-

work in which sensory models are often cast. This is

especially interesting when there could be a complex loop

between behavioral output and input stimulus, for exam-

ple, when modeling exploration of an agent over long time

scales in a complex sensory environment [63].

Conclusion
Recent computational advances have transformed our

ability to accurately model the neural responses of senso-

ry systems, even at high levels of the sensory hierarchy

that were previously deeply mysterious. However, there

is much more exciting work to be done, and, if the recent

past is a guide to the future, the next successes will

require the continued convergence of techniques and

workers in neuroscience, machine learning, computer

science, and psychophysics.
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