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Summary

Decision making is a complex process in which different
sources of information are combined into a decision variable

(DV) that guides action [1, 2]. Neurophysiological studies
have typically sought insight into the dynamics of the deci-

sion-making process and its neural mechanisms through
statistical analysis of large numbers of trials from sequen-

tially recorded single neurons or small groups of neurons
[3–6]. However, detecting and analyzing the DV on individual

trials has been challenging [7]. Here we show that by
recording simultaneously from hundreds of units in prearc-

uate gyrus of macaque monkeys performing a direction
discrimination task, we can predict the monkey’s choices

with high accuracy and decode DV dynamically as the deci-
sion unfolds on individual trials. This advance enabled us to

study changes of mind (CoMs) that occasionally happen

before the final commitment to a decision [8–10]. On indi-
vidual trials, the decoded DV varied significantly over time

and occasionally changed its sign, identifying a potential
CoM. Interrogating the systemby randomstopping of the de-

cision-making process during the delay period after stim-
ulus presentation confirmed the validity of identified CoMs.

Importantly, the properties of the candidate CoMs also con-
formed to expectations based on prior theoretical and

behavioral studies [8]: they were more likely to go from an
incorrect to a correct choice, they were more likely for

weak and intermediate stimuli than for strong stimuli, and
they were more likely earlier in the trial. We suggest that

simultaneous recording of large neural populations pro-
vides a good estimate of DV and explains idiosyncratic as-

pects of the decision-making process that were inaccessible
before.
Results

Psychophysical studies of the decision-making process in
various contexts suggest an underlying neural mechanism
based on integration of evidence toward a decision criterion
[11–17]. Supporting evidence for thismechanism has emerged
from electrophysiological studies of the parietal cortex, frontal
cortex, basal ganglia, and superior colliculus of monkeys
performing simple perceptual decisions [3, 5, 18–22]. More
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recently, magnetoencephalography, electroencephalography,
and functional magnetic resonance imaging studies have re-
vealed homologous mechanisms in the human brain [23–26].
Although these studies have significantly advanced our

understanding of the decision-making process, they have
mainly relied on statistical analyses across trials because of
the stochastic nature of spiking activity at the single-neuron
level. Yet tracking the evolution of the decision variable (DV)
on single trials and relating fluctuations in the DV to internal
cognitive states and overt behavior are critical for incisive tests
of current models of decision making. Recent advances in
multielectrode recording promise to break this barrier through
measurement and analysis of the underlying neural population
responses on single trials. So far, this ability has been mainly
used in the field of neural prosthetics, where accurate, real-
time decoding of neural population responses is necessary
for guidance of motor prosthetic devices (e.g., [27, 28]).
However, similar techniques can also be used to advance
our understanding of cognitive processes, especially decision
making [7, 29].
We used 96-channel multielectrode arrays to record from

neural populations in area 8Ar of the prearcuate gyrus of two
macaque monkeys while they performed a direction discrimi-
nation task [30, 31] (Figure 1A). On each trial, the monkey
viewed a patch of randomly moving dots for 800 ms. After a
delay period of variable length, the monkey received the
‘‘go’’ cue and reported the perceived motion direction by
making a saccadic eye movement to one of the two available
targets (T1 and T2). The multielectrode array covered
4 mm 3 4 mm of the cortical surface (Figure 1B) and enabled
us to record simultaneously from hundreds of single- andmul-
tineuron units in a significant portion of the prearcuate gyrus.
Compatible with previous studies, many units showed differ-
ential activity for the two choices during the motion viewing
and delay periods [20, 32], in addition to the perisaccadic
period [33] (Figure 1C).
To explore the efficacy of simultaneous, high-density

recording for analyzing dynamics of the decision-making pro-
cess, we trained a logistic classifier to predict the monkey’s
upcoming choice based on neural population responses at
successive times during individual trials (100 ms sliding win-
dow; see the Supplemental Experimental Procedures). The
classifier finds a set of linear weights ðw!Þ on the population
neural responses ð r!Þ that maximizes the probability of
correctly predicting the choice. Although it is possible to
improve the prediction accuracy by adopting more-sophisti-
cated nonlinear models, in this report we adhere to the linear
model for its simplicity and biological plausibility. Other
models yielded qualitatively similar results. Figure 2A shows
the cross-validated accuracy (see the Supplemental Experi-
mental Procedures) of our model, averaged across sessions.
Model prediction accuracy is near chance at the beginning of
the trial but rises quicklyw200ms aftermotion onset, reaching
perfection just before the saccade.
Across 15 data sets, the prediction accuracy of the popula-

tion responses was much higher than that of the average
single unit (Figure 2B). In the 100 ms window immediately
before the ‘‘go’’ cue, the cross-validated accuracy of
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Figure 1. Multielectrode Recording from the

Prearcuate Gyrus during a Direction Discrimina-

tion Task

(A) Behavioral task. The monkey views 800 ms of

random dot motion while maintaining its gaze on

a central fixation point. The strength and direction

of motion varied randomly from trial to trial. After

a variable delay period, the monkey received the

‘‘go’’ signal (fixation point disappeared) and re-

ported the perceived motion direction with a

saccadic eye movement to one of two visual tar-

gets. Correct responseswere rewardedwith juice

after a short hold period.

(B) Two macaque monkeys were implanted with

multichannel electrode arrays in the prearcuate

gyrus, which is marked with a blue box on the

lateral surface of a typical macaque brain (top;

University of Wisconsin Brain Collection). The

exact location of each array with respect to the

arcuate (as) and principal (ps) sulci is shown for

each monkey (bottom). The white squares on

the array show the locations of the ground pins.

The portions of the principal and arcuate sulci

that were visible in the craniotomy are indicated

with black lines. Dashed segments at the end of

a sulcus indicate that the sulcus extended in

that direction beyond our window of visibility.

(C) Average responses of two example prearcu-

ate units for correct ipsilateral and contralateral

choices. The units were recorded from the same

electrode in the same session but had different

motion and saccade selectivities. Shading indi-

cates mean 6 SEM.
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the population prediction was close to 0.9 on average
(mean 6 SEM: 0.86 6 0.01), whereas the average accuracy
of individual units was barely above chance (mean 6 SEM:
0.557 6 0.001) and was significantly smaller than that of the
population (t test, p < 1028). More importantly, not only was
population performance better than the average single unit,
but it was consistently superior to the best unit recorded in
each session (Figure 2C; t test, p = 3 3 1025). The population
was superior to individual units in other time epochs as well
(data not shown).

The increased prediction accuracy afforded by multielec-
trode recording enabled more accurate tracking of the deci-
sion variable over time. In essence, our logistic regression
finds the best hyperplane that separates the population
response patterns associated with the two choices. The pop-
ulation response pattern at eachmoment can be envisioned as
a point in a high-dimensional space whose axes are the firing
rates of individual units. The distance of this point from the
discriminant hyperplane ðw!T

r
!Þ represents the strength of

model’s prediction: a small distance corresponds to low cer-
tainty about the monkey’s upcoming choice, and a large dis-
tance corresponds to high certainty. We call this distance
‘‘model decision variable.’’ Themodel DV provides an estimate
of themonkey’s internal DV, especially when themodel predic-
tion accuracy is high. Averaged across trials, the model DV
gradually increased from zero to large values (positive and
negative values corresponded to T1 and T2 predictions,
respectively; Figure 3A). The rate of this rise depended on
the strength of motion, especially during the motion-viewing
period (Figure 3A, inset): DV increased more rapidly for stron-
ger stimuli, compatible with previous observations in parietal
and prefrontal neurons, where the rate of change of neural re-
sponses depends on the strength of sensory evidence [3, 6,
20, 34, 35].
Similarly, on individual trials, the DV fluctuated around
the discriminant hyperplane at the beginning of the
motion-viewing period but gradually moved farther from
the hyperplane over time. After gaining an initial distance, the
population-basedDV typically stayed on one side of the hyper-
plane during the late motion-viewing period and the ensuing
delay (Figure 3B, two example trials). On a minority of trials,
however, the population response crossed from one side of
the hyperplane to the other side during the trial, signaling a
shift in the predicted choice from one target to the other (Fig-
ure 3C, two example trials).
An intriguing possibility is that these changes in DV sign,

calculated from the neural population response, identify
changes of mind (CoMs) that occur in human and animal
observers as they make choices on the basis of variable evi-
dence [7–10]. Alternatively, however, changes in sign of the
DV might simply reflect noise from any number of sources
that are irrelevant to performance on the task.
We conducted four analyses to test whether observed vari-

ations in the DV reflect, at least in part, genuine changes of
mind. The first analysis concerns the reliability of DV fluctua-
tions for monitoring the momentary ‘‘decision state’’ of the
system as time passes during long-duration trials. The remain-
ing three analyses assess whether intratrial DV sign changes
conform to change-of-mind properties that are predicted by
decision-making models and empirically observed in humans
and monkeys performing a similar decision-making task.

Prediction of Choice Is Reliable throughout Long Delay
Periods

The initial important question is whether intratrial sign changes
in the DV, like those illustrated in Figure 3C, are simply noise or
whether they accurately reflect moment-to-moment variation
in the decision state of the system—the decision that would
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Figure 2. The Recorded Neural Populations

Afford High Accuracy Prediction of the Monkeys’

Choices

(A) Prediction accuracy of the recorded popula-

tion for the monkey’s choice. A logistic model

was fit to 90% of the trials in each session and

was used to predict the choice in the remaining

10%, in sliding 100 ms bins. The dark trace and

shading indicate mean 6 SEM across the ses-

sions. The horizontal black bar indicates the

time window that was used in the analyses in (B)

and (C).

(B) The neural population classifier is a better pre-

dictor of the monkey’s choice than the average of

the individual units recorded in a session. The

probability densities of population and individual

unit choice prediction accuracies are highly

distinct. Prediction accuracies were calculated

for a 100 ms window immediately before the

‘‘go’’ cue.

(C) Comparison of population choice prediction

accuracy with the mean (left) and best (right) indi-

vidual units. Each point represents one data

collection session. Even the best individual units

are inferior to the population.
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be made if the trial were to end now. We addressed this
question by separately analyzing predictive accuracy of the
population activity for trials of different delay period duration.
During each experiment, the duration of the delay period was
varied randomly among several preset values (see the Supple-
mental Experimental Procedures). We grouped the trials into
quintiles based on the length of the delay period. For each
quintile, we then calculated the hyperplane that best sepa-
rated the T1 and T2 choice trials from the pattern of neural pop-
ulation response in the 100 ms immediately before the ‘‘go’’
cue. For all quintiles, the model achieved high cross-validated
accuracies for predicting the monkey’s choice on individual
trials (Figure 4A; 0.76 6 0.02 for the shortest delays to 0.87 6
0.02 for the longest delay). The results were not critically
dependent on using a separate model for each quintile; similar
results were obtained when a single model was used for all
quintiles (Figure S1 available online). Although predictive ac-
curacy improved modestly for longer delay periods, it was
far above chance even for the shortest delays. Thus, the sign
of the DV during the delay period is a good predictor of choice,
even for the shortest-duration trials.

Importantly, there is no distinction between long- and short-
duration trials prior to the first possible ‘‘go’’ signal—the tem-
poral structures of the trials are identical until that point. Thus,
predictive accuracy of the DV sign measured prior to the ‘‘go’’
signal on shorter-duration trials provides an objective estimate
of predictive accuracy on longer-duration trials had those trials
ended at an earlier point in time. We therefore conclude that
DV sign changes on longer-duration trials (e.g., Figure 3C) pro-
vide insight into the momentary decision state of the system,
reflecting in part choices that would have been made had we
terminated the trial earlier.

DV Sign Changes Reflect Expected Properties of

Behavioral Changes of Mind
After identifying candidate CoMs using DV sign changes, we
performed three analyses to determine whether candidate
CoMs exhibit properties that are associated with actual
CoMs in behavioral studies and are expected from current
models of the decision process [7, 8].
First, CoMs should happen more frequently for weak- and
intermediate-strength motion stimuli than for strong motion
stimuli because counterevidence that elicits a CoM will occur
less frequently for stronger stimuli [8]. Figure 4B shows
that the predicted trend is indeed present in our data
(Equation S3 in the Supplemental Experimental Procedures,
b1 = 20.23 6 0.04, p = 1.6 3 1028).
Second, CoMs are more likely to steer the decision from an

incorrect to a correct option than vice versa because they are
based on evidence that is not yet processed during the initial
stages of choice formation [8, 9]. On average, incorporation
of additional evidence should improve the decision maker’s
accuracy. Consistent with this prediction, we observed that
candidate CoMs derived from our neural population data
were more likely to shift the predicted choices from the incor-
rect target to the correct target (Figure 4C). The difference in
CoM toward correct versus wrong choices was significantly
larger than zero (sign test, p < 1028) and grew as a function
of motion strength (Equation S4 in the Supplemental Experi-
mental Procedures, b1 = 0.19 6 0.07, p = 0.009). Thus, CoMs
increased the monkey’s overall reward intake. We also tested
whether the monkey’s final choices after CoMs were more
likely to be correct compared to the trials in which CoMs
were not detected. Controlling for motion strength and delay
duration, we found no significant difference between the two
trial types (Equation S5 in the Supplemental Experimental Pro-
cedures, b2 =20.0046 0.043, p = 0.92). Since CoMs improved
the probability of a correct response, they must have occurred
selectively on trials for which the initial decision state was
likely to be incorrect, perhaps due to lapses of attention earlier
in the trial.
Third, the probability of a CoM should decrease as the

monkey waits during the delay period. Due to the finite latency
of visual signals, processing the last sensory evidence neces-
sarily occurs during the delay period, and memory processes
related to the visual stimulus may influence the final decision
as well. As the delay period proceeds, however, a final com-
mitment to a choice is increasingly likely. Consistent with
this hypothesis, we observed a monotonic decline in the
probability of a CoM with delay period duration (Figure 4D;
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Figure 3. The Model Decision Variable Indicates Accumulation of Evidence

over Time, and Intratrial Changes in the Sign of the DV Identify Candidate

Changes of Mind

A logistic regression (Equation S1 in the Supplemental Experimental Proce-

dures) was used to find the best hyperplane that separates the population

response patterns corresponding to the two choices. The distance of the

population response pattern from this discriminant hyperplane represents

themodel belief about the upcoming choice.We call this distance themodel

decision variable, or DV.

(A) Average decision variable across the sessions. The inset shows that the

buildup of the decision variable during the motion-viewing period depends

on stimulus strength (H, motion strengthR 20%; L, motion strength% 6%).

The dark traces and shading represent the mean 6 SEM.

(B) Two sample trials in which the model DV built up to a positive (solid) or

negative (dashed) value and maintained its sign throughout the trial. The

trials ended with T1 and T2 choices, respectively.

(C) Two sample trials in which the sign of the model DV flipped during the

delay period, indicating a change of predicted choice based on the model.

Arrows indicate the time of flip.
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Equation S6 in the Supplemental Experimental Procedures,
b2 = 20.21 6 0.01, p < 1028).

The success of the model for the delay period encouraged
us to investigate the properties of candidate CoMs during
the motion-viewing interval as well, even though success
was less certain for two reasons. First, because we used a
constant stimulus duration in all experiments, we were unable
to validate candidate CoMs duringmotion viewing using short-
duration trials as described above for the delay period. Sec-
ond, candidate CoMs were less reliable during motion viewing
as reflected in the lower predictive power of the model during
this interval (Figure 2A). Nevertheless, the properties of candi-
date CoMs during the motion-viewing interval were similar to
those during the delay period. CoMs were less frequent for
stronger stimuli (Figure S2A; Equation S3 in the Supplemental
Experimental Procedures, b1 =20.0646 0.021, p = 0.003) and
were more likely to change the DV in the direction of a correct
judgment (Figure S2B; Equation S4 in the Supplemental Exper-
imental Procedures, b1 = 0.716 0.18, p = 0.001). The frequency
of candidate CoMs at the beginning of the motion-viewing
period was low because the DV is initially near chance and
must first build up toward one of the choices before a CoM
can be detected reliably (see the Supplemental Experimental
Procedures). Thus, CoM frequency increased initially but
declined after 300 ms of motion viewing (Figure S2C) due to
increased likelihood of commitment to a choice, consistent
with the delay period results (Figure 4D). These results from
the motion-viewing period are encouraging but should be in-
terpreted cautiously because of sensitivity of some results
(Figure S2C) to time window sizes (see the Supplemental
Experimental Procedures).
Overall, candidate CoMs identified from high-density re-

cordings of prefrontal cortex conform to all three predictions
based on behavioral analysis of changes of mind.

Discussion

Neurophysiological studies have typically sought insight into
the dynamics of decision making and its neural mechanisms
through statistical analysis of large numbers of trials from
sequentially recorded single neurons or small groups of neu-
rons. Measurement and analysis of the DV on individual trials
has been challenging due to technical and conceptual limita-
tions. We sought to overcome these limitations by (1)
recording simultaneously from hundreds of units in cortical
areas hypothesized to contribute to the decision-making pro-
cess, (2) developing simple, efficient algorithms for estimation
of the covert DV from neural population responses, and (3) im-
plementing a new analytic approach to verify the accuracy of
the estimated DV fluctuations during the delay period.
The ability to track moment-to-moment variation of the DV

enables the study of important aspects of the decision-making
process that have been largely inaccessible thus far. As a
proof of concept, we focused on changes of mind during peri-
threshold judgments of motion direction. Our behavioral task
created fertile conditions for CoMs due to the noisy, tempo-
rally extended nature of the visual motion stimulus. Our first
new finding is that the covert DV can be accurately tracked
during single behavioral trials using the methods introduced
in this paper. Crucially, trials with short delay periods verify
the accuracy of estimates of the covert DV on longer trials; in
essence, short-delay trials act as ‘‘probes’’ of ongoing DV
estimates on longer trials [34, 36, 37]. Our second new finding
is that changes in the sign of the DV identify candidate CoMs
and that candidate CoMs conform to three different pre-
dictions based on prior behavioral and modeling studies.
Together, these results demonstrate the power of high-density
neural recordings for single-trial estimates of the fluctuating
DV and for detection of covert changes in decision state
commonly referred to as changes of mind.
CoMs can arise from various sources: changing sensory

evidence [8], correction of an initial confusion about stim-
ulus-response association [9], incorporation of a new decision
policy, or retrieval of new information from memory [8]. Our
monkeys’ CoMsmay stem fromany of these sources or others,
such as simple lapses in attention or effort. Accumulated over
time, CoMs tend to be self-corrections, often benefitting the
decision maker by improving accuracy. By characterizing
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Figure 4. The Sign of the Model DV Reliably

Reflects the Incipient Decision throughout the

Delay Period

Intratrial changes in the sign of the DV conform to

CoM properties expected from theoretical and

behavioral studies.

(A) Cross-validated prediction accuracy of the

monkey’s choice for different delay durations.

Trials were grouped into quintiles based on delay

period duration. Accurate choice prediction on

short-duration trials confirms that variation in DV

reflects the monkey’s decision state at early points

in long-duration trials. Thus, intratrial changes in

DV sign are consistent with CoM as opposed to

extraneous noise (see the Results).

(B) Probability of switching from one predicted

choice to another in consecutive delay quintiles

declines for stronger motion (C1, motion strength

% 6%; C2, 6% < motion strength % 20%; C3, mo-

tion strength > 20%).

(C) Switches in the predicted choice were more

likely to rectify an erroneous choice, especially for

stronger motion stimuli.

(D) Switches were more frequent early during

delay.

Error bars indicate the SEM. See also Figures S1

and S2.
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the neural DV and identifying CoMs on individual trials, we
show that monkeys, like humans, exhibit self-correcting
behavior.

Past studies have documented cortical and subcortical
fluctuations in neural activity that might correspond to
changes of mind [7, 29, 38]. Those studies focused on the
detection of discrete hidden states in the responses of single
neurons [38] or small numbers of simultaneously recorded
neurons [7, 29]. The discrete states are defined as specific
patterns of spiking across the recorded population. Transi-
tions from one state to another —often formalized by a hidden
Markov model—can occasionally signal changes of mind.
Here we extend those studies by extracting a continuous
measure of the DV, characterizing its dynamics, and confirm-
ing the inferred CoMs by interrogating the monkey’s choice
at variable times.

The probabilistic characterization of the choice provides an
analog estimation of the DV, compatible with the quantitative
models of the decision-making process [12, 17, 35, 39]. In
those models, sources of information are integrated into an
analog variable [31] that explains both the choice and reaction
time. However, it remains to be seen whether various factors,
such as priors and value information, that bear on the decision
in those models also modify our estimated DV.

Our model incorporates the responses of all neurons
recorded on the array in a given experiment. Unlike in many
classic single-neuron studies, we did not focus on merely the
units that were highly selective for the motion directions or
target locations used in the task [20, 40, 41]. We do not know
whether all of the recorded neurons contributed to the deci-
sion-making process. Nor do we know the exact role that
they may play in the process. However, the recorded neurons
are informative about the monkey’s upcoming action as indi-
cated by the model’s high prediction accuracy. We simply
exploit this information to provide a probabilistic glimpse
into the DV that supports choice and CoM. Our model is not
a mechanistic account of how the DV is constructed or how
commitment to a choice is made. Addressing those questions
requires further experiments and selective recording and
manipulation of neurons based on their response selectivity
(e.g., [18, 34, 42–44]).
The advent of techniques for routine, simultaneous

recording of tens to hundreds of neurons offers unique oppor-
tunities for cognitive neuroscience, particularly for the detec-
tion and tracking of cognitive states and processes that occur
unpredictably in time and have no overt behavioral correlate.
Covert cognitive processes are difficult to monitor in classical
neurophysiological studies that require time-locking and
across-trial signal averaging, but they are potentially detect-
able in real time from neural population activity. Even when
covert neural processes are detectable, however, their inter-
pretation will depend on creative strategies for behavioral veri-
fication. Our study of CoM offers a first step in that direction.
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Supplemental Experimental Procedures 
We recorded from populations of neurons in the prearcuate gyrus of two macaque monkeys 
while they performed a direction discrimination task. All training, surgery, and recording 
procedures conformed to the National Institutes of Health Guides for the Care and Use of 
Laboratory Animals and were approved by the Stanford University Animal Care and Use 
Committee. Due to the similarity of results across the monkeys we pooled the data for all 
analyses to increase statistical power. 
 

Behavioral task.  Figure 1A illustrates the sequence of events on each trial.  Each trial began 
with the appearance of a central fixation point (FP; 0.3° diameter) at the center of the display 
monitor. The monkey was required to maintain gaze within ±1.5° of FP as long as it was 
visible on the screen. Eye position was measured with a scleral search coil (CNC Engineering, 
Seattle, WA), and inappropriate fixation breaks resulted in termination of the trial.   

After the monkey fixated on the central fixation point, two targets appeared on the screen (T1 
and T2). After a 250 ms delay, a random dot motion stimulus was presented for 800 ms and 
was followed by a delay period of variable duration. At the end of the delay period the FP 
disappeared (Go cue), instructing the monkey to report the perceived motion direction by 
making a saccadic eye movement to one of the targets. For a valid response the monkey’s 
saccade was required to land within 2-4° of the target (depending on target eccentricity). In 10 
of 15 sessions the two targets were positioned on opposite sides of the screen (T1 contralateral, 
T2 ipsilateral). On the remaining 5 sessions both targets were positioned contralateral to the 
recorded hemisphere (T1 and T2 were randomly assigned). On each trial, motion direction was 
either toward T1 or T2. We controlled the difficulty of the trials by varying the percentage of 
dots moving coherently in the same direction (motion strength or coherence) as described 
previously [S1, S2]. The set of motion strengths for each monkey were chosen to afford a wide 
range of accuracies, from chance to perfection. For monkey 1, the set included 0%, 2.5%, 5%, 
10%, 20%, and 40% coherence. For monkey 2, the set included 0%, 1.2%, 2.4%, 4.8%, 9.6%, 
19.2%, and 38.4% coherence in most sessions. For two sessions we tested slightly different 
sets: 0%, 6%, 12%, 24%, and 48% coherence in one session, and 0%, 1%, 2%, 4%, 8%, 16%, 
and 32% coherence in the other. The motion direction and strength varied randomly from trial 
to trial, but were fixed within each trial.  The monkey received a liquid reward for choosing the 
target that corresponded to the motion direction. For 0% motion strength the monkey was 
rewarded randomly on half of the completed trials irrespective of the direction of the choice.  

The variability of the delay period duration plays a crucial role in our analyses because it 
provides an objective means to test the accuracy of our neuronal model predictions about the 
subject’s impending choice. Different delay durations were used in various sessions, permitting 
useful tests of the robustness of our results. In seven sessions the delay duration of each trial 
was drawn randomly from these five values: 323 ms, 510 ms, 698 ms, 885 ms, and 1073 ms. In 
six sessions the delay durations were 673 ms, 760 ms, 848 ms, 935 ms, and 1023 ms. In one 
session they were 473 ms, 560 ms, 648 ms, 735 ms, and 823 ms; and in the last session they 
were drawn randomly from several discrete values in the range 300-1500 ms. None of our 
results strongly depend on the exact delay durations used in each session. We therefore present 
aggregated results across sessions. 



The 15 sessions used in this study were chosen based only on the reliability of recordings, 
number of trials (>1000), and number of recorded units (>150). The dataset consists of 20938 
trials and 3257 units. 
 

Neural recording. The monkeys were implanted with 96-channel microelectrode arrays 
(electrode length=1.5 mm; spacing=0.4 mm; Blackrock Microsystems, Salt Lake City, UT) in 
the prearcuate gyrus (Fig. 1B). Neural spike waveforms were saved online (sampling rate, 30 
kHz) and sorted offline (Plexon Inc., Dallas, TX). To improve the quality of sorting we used 
customized algorithms to remove recording artifacts that were registered by a large number of 
electrodes. Also, we merged redundant spike waveform clusters based on waveform shapes, 
firing rates and inter-spike intervals. We identified 100-250 single- and multi-units in each 
session (median=219). Throughout the paper we use the term ‘units’ to refer to both isolated 
single neurons and multi-units. All units were retained in our analyses irrespective of their 
selectivity. 

 
Data analysis. We quantified the time-varying firing rate of each unit on each trial by counting 
the number of spikes in a sliding 100 ms window (step size=20 ms). We used an L1-
regularized logistic regression [S3] to predict the monkey’s choice based on neural responses 
on each trial: 

Logit Pt T1( )⎡⎣ ⎤⎦ = β0 t( ) + βi t( )ri t( )
i=1

n

∑     (Equation S1) 

where ri t( )  is the firing rate of unit i  at time t , n  is the number of recorded units and the β  
coefficients are model parameters. L1-regularization imposes a constraint on the L1-norm of 
the coefficients to avoid overfitting. The model was cross-validated by using 90% of trials in 
each session as ‘training set’ for fitting the parameters and the remaining 10% as ‘test set’ to 
measure the model’s prediction accuracy. The best regularization parameter of the model was 
found by a 10-fold cross-validation within the training set. At any moment in time the model 
predicts a T1 choice if Logit P T1( )⎡⎣ ⎤⎦  > 0 and a T2 choice if Logit P T1( )⎡⎣ ⎤⎦  < 0. The model 
prediction is correct if it matches the monkey’s actual choice at the end of the trial. Fig. 2A 
shows the model prediction accuracy averaged across sessions. We used a similar logistic 
regression to gauge the prediction accuracy of individual units: 
 
Logit Pt ,i T1( )⎡⎣ ⎤⎦ = β0 t( ) + β1 t( )ri t( )    (Equation S2) 
 
To compare individual units with the population (Fig. 2B-C), we analyzed data from the 100 
ms window immediately before the Go cue. 
The logistic regression of Equation S1 essentially finds the hyperplane that best separates the 
population response patterns corresponding to the two choices. The population response 
pattern at each moment can be envisioned as a point in a high-dimensional space whose axes 
are the firing rates of individual units. The distance of this point from the discriminant 
hyperplane (the right-hand side of Equation S1) represents the model belief about the 



upcoming choice ( Logit Pt T1( )⎡⎣ ⎤⎦ , the left-hand side of Equation S1).  A small distance 
corresponds to a weak belief and a large distance corresponds to a strong belief. We call this 
distance the ‘model decision variable’ (DV) and use the changes in the sign of the DV to 
identify candidate ‘changes of mind’ (CoM) for the monkey (Fig. 3C). This approximation is 
valid especially where the model predicts the monkey’s choice accurately.  
Our criterion for detecting possible CoM—a simply sign change in the DV—is lenient. It 
ensures that actual CoM’s are not missed, but it can include spurious CoM’s due to neural 
noise or the imperfection of the logistic classifier.  We have explored more stringent and 
complex criteria. For example, a change of mind can be defined as a swing from high certainty 
for one choice (e.g. large positive DV) to another (e.g. large negative DV). These more 
stringent criteria have additional degrees of freedom (e.g., criterion on the magnitude of DV) 
and can be fine tuned to reduce the number of detected CoM’s. We explored this space, but the 
results reported in this paper are not critically dependent on the choice of criteria. For all 
analyses in this paper, therefore, we employed the simple sign change criterion to avoid 
additional degrees of freedom and fine-tuning of results. 
To determine whether putative neural CoM’s conformed to properties expected from prior 
studies of behavioral changes of mind [S4, S5], we analyzed neural CoM statistics during the 
delay period (after the dots and before the Go cue) when the model prediction accuracy was 
above 75% (Figs. 2A and 4A).  We first divided the trials of each session into quintiles based 
on the length of the delay period. As explained above, in 14 of the 15 sessions the delay period 
was chosen randomly from five distinct values. Therefore the trials in each quintile of a session 
had identical delays and our grouping did not create spurious boundaries or mix trials with 
variable delay durations.  In contrast to the “sliding window” analysis described above (e.g. 
Fig. 3), here we calculated the predicted decision (sign of the DV) independently for each 
delay period quintile.  We retrained the logistic model (Equation S1) separately for the trials in 
each quintile using the last 100 ms of their delay period. For the sessions where the time 
difference between consecutive quintiles was less than 100 ms, we slightly reduced the size of 
the window for the calculation of firing rates (87 ms) to ensure no overlap between the quintile 
models. We then calculated the number of neural CoM’s observed on each trial.  For trials with 
the shortest delay periods (first quintile) it was impossible (by definition) to detect a CoM 
since only a single DV was calculated.  For trials of the second quintile, a single opportunity 
for a CoM occurred, two opportunities for trials of the third quintile, and so forth.  Importantly, 
the high overall prediction accuracy of the model (>75% correct) for trials of the shortest 
duration (first quintile) creates confidence that the DV calculated within each quintile of longer 
trials accurately estimates the choice the animal would have made had we stopped those trials 
earlier.  It is thus reasonable to consider neural CoM’s detected on long trials to be real 
changes in the decision state of the animal even though we have no direct behavioral readout of 
the hidden decision state on these trials.  Quantitative analyses in Figure 4 (see equations 
below) measured CoM statistics for those longer-duration trials (second and higher quintiles). 
The results presented in this paper were not critically dependent on training separate models 
for different delay periods. The discriminant hyperplanes calculated for different delay 
quintiles were closely related to each other. Consequently, training and cross-validating a 
single model based on the last 87-100 ms of the delay period of all trials replicated all key 
results (Fig. S1).  



To identify candidate CoM’s during the motion-viewing period (Fig. S2) we used the changes 
in the sign of the decision variable, calculated from the models trained on all trials of a session 
(Fig. 3). In contrast to the delay period, we could not independently verify the choice-
predictive accuracy of CoM’s during the motion-viewing period because the motion duration 
was the same for all trials.  A priori, candidate CoM’s based on only a DV sign change will be 
less reliable during the motion-viewing interval due to the lower overall accuracy of the model 
predictions early in the trial (Fig. 2A). To compensate for this reduced accuracy we used a 
more stringent criterion. To quantify the frequency and direction of CoM for different motion 
strengths (Fig. S2A-B), we required the sign of DV to persist for 150 ms before and after a sign 
change (‘persistence window’) to qualify as a CoM. To quantify the time course of CoM (Fig. 
S2C), we reduced this requirement to 75 ms to increase the number of independent estimates of 
the decision state during motion viewing. The trends in Fig. S2A-B are robust to variations of 
the persistence window. The trend in Fig. S2C, however, is sensitive to the duration of the 
persistence window and should be interpreted cautiously; larger windows reduce and even 
abolish the decline of CoM frequency in the late motion-viewing period.  This occurs because 
long persistence windows impose a sterner criterion for measuring decision states and 
detecting CoM’s, which inevitably delays CoM’s to later stages of the motion viewing interval 
and makes the decision state less likely to change once established.  We have observed similar 
sensitivity to window size in simulations (data not shown).   
To test whether the frequency of CoM’s during the delay period varied with the stimulus 
strength we used a linear regression model: 
 
η = β0 + β1C + β2q    (Equation S3) 
 
where η  is the number of CoM detected by the model in each trial, C  is the motion strength, 
q  is the quintile that the trial delay duration belonged to (2 to 5), and βi  are the regression 
coefficients. Only trials of the second and higher quintiles contributed to the analysis; as 
described above, the first quintile could not have a CoM in the delay period. q  was included in 
the regression to control for the increased probability of CoM detection due to increased 
number of quintile transitions for longer delay periods.  

We used a related linear regression to test whether CoM’s were more likely to change the 
monkey’s response from an incorrect to a correct choice for stronger stimuli: 

 

Δs = β0 + β1C + β2q    (Equation S4) 
 
where Δs  is the difference between the number of CoM’s that move the choice prediction 
from incorrect to correct and vice versa (Δs > 0  implies more incorrect to correct). This 
analysis focused on trials with C > 0  in which at least one CoM was detected. Trials with 
C = 0  were excluded because of ambiguity in the definition of a correct response. The null 
hypothesis is that Δs  does not change with motion strength (H0 :β1 = 0 ).  After rejecting the 
null hypothesis via the linear regression analysis, we used a sign rank test to show that the 



median of Δs  was larger than zero across all trials used in the regression analysis (significant 
prevalence of incorrect to correct changes). 

To test whether the overall probability of being correct was larger on trials in which CoM’s 
were detected we used the following logistic regression: 

 

Logit P cor( )⎡⎣ ⎤⎦ = β0 + β1C + β2I + β3q    (Equation S5) 
 
where I  is an indicator variable  (0 for trials with no CoM and 1 for trials with CoM). C  and 
q  are the motion strength and delay duration quintile, respectively (same as in Equation S3). 
β2 > 0  indicates that the subject was correct more frequently on trials in which CoM’s were 
detected. 

We tested the dependence of the probability of changes of mind on time using a logistic 
regression: 

 

Logit P switch( )⎡⎣ ⎤⎦ = β0 + β1C + β2 ′q    (Equation S6) 
 

where ′q  is the delay quintile in which a CoM could be detected minus one. Only trials in the 
second or higher quintiles contributed to this analysis because at least two delay bins were 
required to detect a CoM, as described above. Each trial contributed as many data points as 
permitted by the length of its delay period (maximum=4). The null hypothesis is that the 
probability of observing a switch does not depend on time (H0 :β2 = 0 ). 

All completed trials (correct and incorrect) were included in the calculation of discriminant 
hyperplane and subsequent analyses. The grouping of motion strengths to C1 (C≤6%), C2 
(6%<C≤20%), and C3 (C>20%) in Fig. 4, S1, and S2 is for illustrative purposes only. All 
statistical analyses that are mentioned above were performed using the actual motion strengths 
of the trials.  
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